Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon dioxide (scCO) for the formation of polymeric foam and the incorporation of active ingredients, in conjunction with the encapsulation of inclusion complexes (ICs), to ensure physical stability and augmented bioactivity. The objective of this study was to assess the impact of IC impregnation and subsequent foam formation on PLA films and PLA/PBAT blends that had been previously impregnated. The study's methodology encompassed the formation and characterization of ICs with caffeic acid (CA) and β-cyclodextrin (β-CD), along with the thermal, structural, and morphological properties of the resulting materials. Higher incorporation of impregnated IC into the PLA(42)/PBAT(58) blend was observed at 12 MPa pressure and a depressurization rate of 1 MPa/min. The presence of IC, in addition to a lower rate of expansion, contributed to the formation of homogeneous cells with a size range of 4-44 um. On the other hand, the incorporation of IC caused a decrease in the crystallinity of the PLA fraction due to the interaction of the complex with the polymer. This study makes a significant contribution to the advancement of knowledge on the incorporation of compounds encapsulated in β-CD by scCO, as well as to the development of active materials with potential applications in food packaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11944509PMC
http://dx.doi.org/10.3390/polym17060803DOI Listing

Publication Analysis

Top Keywords

caffeic acid
8
active ingredients
8
integration complexed
4
complexed caffeic
4
acid polylactic
4
polylactic acid-based
4
acid-based biopolymer
4
biopolymer blends
4
blends supercritical
4
supercritical co-assisted
4

Similar Publications

The properties of Ocicmum gratissimum aqueous extract against ultraviolet-C-induced inflammation.

J Ethnopharmacol

September 2025

Department of Bachelor's Degree Program for Indigenous Peoples in Senior Health and Care Management, National Taitung University, Taitung, 950, Taiwan; Master Program in Biomedical Science, National Taitung University, Taitung, 950, Taiwan; Elderly Industry Sustainable Low Carbon Research Center, Na

Ethnopharmacological Relevance: Ocimum gratissimum L. commonly known as basil, is an herb-like plant frequently mentioned in ethnopharmacological studies due to its widespread availability in local communities and its widespread use in treating inflammatory conditions. In a previous study, we demonstrated that aqueous extracts of Ocimum gratissimum (OGE), which are rich in plant polyphenols such as caffeic acid and isoflavones, can protect skin cells from UVC-induced inflammation and damage in migration and proliferation.

View Article and Find Full Text PDF

Caffeic acid phenethyl ester disrupts germ layer specification in Xenopus embryos.

Reprod Toxicol

September 2025

Department of Biochemistry and Molecular Biology, Brain Korea 21 Project, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea. Electronic address:

Xenopus embryo serves as an ideal model for teratogenesis assays to observe the effects of any compounds on the cellular processes crucial for early development and adult tissue homeostasis. In our screening of a chemical library with frog embryo, caffeic acid phenethyl ester (CAPE) was found to upregulate the FGF/MAPK pathway, disrupting germ layer formation in early development. Exposure to CAPE interfered with the formation of anterior-posterior body axis and of ectodermal derivatives such as eyes, dorsal fin and pigment cells.

View Article and Find Full Text PDF

Caffeic acid is a key indicator of wine quality, but its sensitive and accurate detection remains challenging due to the lack of high-performance sensing materials. Metal/N-doped porous carbon (M/NPC) electrocatalysts with abundant catalytic sites are promising to address this issue. Herein, a FeCo nanoalloy encapsulated in NPC (FeCo@NPC) was designed and synthesized via a "covalent organic framework (COF) adsorption-pyrolysis" strategy.

View Article and Find Full Text PDF

Identification of the first plant caffeoyl-quinate esterases in .

Front Plant Sci

August 2025

Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Université de Picardie Jules Verne, Université de Liège, Univ. Lille, Junia, UMRT 1158 BioEcoAgro - Specialized Metabolites of Plant Origin, Villeneuve d'Ascq, France.

Chlorogenic acid (5-CQA) is a caffeic acid ester widely accumulated in higher plants. It plays roles in defense against biotic and abiotic stresses. As its biosynthetic pathway shares common enzymes and intermediates with that of lignin, 5-CQA has long been hypothesized to be involved in lignin formation.

View Article and Find Full Text PDF

The current investigation was designed to explore the chemical composition, antioxidant capacity, enzyme inhibitory activity, and cytotoxic potential of four different extracts (Ethyl Acetate, Ethanol, Ethanol/Water (70%) and Water) derived from the aerial parts of . In vitro, assessments were performed utilizing diverse antioxidant assays, along with evaluations of neuroprotective enzyme inhibition targeting acetylcholine and butyl choline enzymes, as well as antidiabetic activities against α-amylase and α-glucosidase and a potential candidate for a tyrosinase inhibitor. LC-ESI-QTOF-MS identification provided a total of 70 compounds in the extracted samples of , including kaempferol 3-(deoxyhexosyl-hexoside)-7-hexoside, rutin, quercetin dideoxyhexoside, caffeic acid hexoside, quinoline alkaloids, morphine derivatives, and scoulerine.

View Article and Find Full Text PDF