A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exogenous acetate mitigates later enhanced allergic airway inflammation in a menopausal mouse model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Asthma, an inflammatory lung disease, disproportionately affects women in adulthood and is associated with a decline in estrogen levels during the menstrual cycle and menopause. To study asthma symptoms during menopause, we used a mouse model of postmenopausal asthma via ovariectomy (OVx). Similar to human menopause, we previously discovered that re-exposure of allergic OVx mice to allergen exacerbates lung inflammation. Surprisingly, we found that probiotic treatment alleviates this inflammatory exacerbation and produces acetate as one of its metabolites. Here, we investigate whether exogenous acetate alone can inhibit the exacerbation of experimental asthma in menopause.

Methods: Mice received acetate administration before and during sensitization. After challenge and OVx the mice were subjected to a second challenge to test whether acetate protected against airway inflammation after menopause induction.

Results: Acetate administration reduced all lung T2 inflammatory responses, as well as the serum immunoglobulin (IgE) level. Early acetate treatment led to an increase in regulatory T cells, even 3 weeks after cessation of the treatment, suggesting that the increase in Treg percentage is associated with the reduction of type 2 inflammation in the airways after menopause induction, indicating its potential role in this process. Given the significant role of the lung-gut axis in asthma and the association of asthma and menopause with intestinal dysfunctions, this finding is particularly relevant; we also analyzed several markers of intestinal integrity. Compared with sham-operated mice, rechallenged allergic menopausal mice had a reduction in the intestinal epithelial genes, MUC2 and OCLN, and preventive supplementation with acetate returned their expression to normal. No change was found in menopausal mice without allergic inflammation.

Conclusion: In conclusion, treatment with acetate prior to estrogen level decline protects sensitized and challenged mice against later airway T2 inflammation and may restore gut homeostasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12023485PMC
http://dx.doi.org/10.3389/fcimb.2025.1543822DOI Listing

Publication Analysis

Top Keywords

airway inflammation
12
exogenous acetate
8
mouse model
8
ovx mice
8
acetate
8
acetate administration
8
menopausal mice
8
mice
7
asthma
6
menopause
6

Similar Publications