A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Glycoengineering of the hepatitis C virus E2 glycoprotein leads to improved biochemical properties and enhanced immunogenicity. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An effective vaccine against hepatitis C virus (HCV) must elicit the production of broadly neutralizing antibodies (bnAbs) reproducibly against the E1E2 glycoprotein complex. Little is known about how glycan content affects this process. Ideally, glycans would maximize epitope exposure without compromising antigen stability or exposing new epitopes. However, typical recombinant vaccines contain considerable heterogeneity in glycan content, which can affect the antibody response and neutralization potency. Here we employed glycoengineered Chinese hamster ovary (geCHO) cell lines that impart nearly homogeneous glycosylation as a means to test how specific glycan features influence antigenicity and immunogenicity for the secreted HCV E2 ectodomain (sE2). Specific geCHO antigens exhibited a modest but reproducible increase in affinity for some mAbs relative to CHO- and HEK293-produced sE2. Surprisingly, one geCHO sE2 antigen failed to bind the CD81 receptor, indicating the potential for significant glycan effects on biochemical properties. We immunized mice with the four antigens and found the total antibody response to be the same for all groups. However, sera from one geCHO group exhibited a 7-fold improvement in neutralization against the homologous HCV pseudovirus and had the most mice whose sera exhibited neutralization activity against genotypes 1b, 2a, 2b, and 3. Further analysis identified beneficial and deleterious glycan features, and the glycan that correlated the most with decreased potency was relatively small. However, size was not the sole determinant of glycan-driven effects on the antibody response. In summary, glycan content impacts biochemical properties of antigens to varying degrees and such effects can influence immune response quality and uniformity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12026506PMC
http://dx.doi.org/10.1101/2025.04.02.646860DOI Listing

Publication Analysis

Top Keywords

biochemical properties
12
glycan content
12
antibody response
12
hepatitis virus
8
glycan features
8
glycan
7
glycoengineering hepatitis
4
virus glycoprotein
4
glycoprotein leads
4
leads improved
4

Similar Publications