Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, a novel technique termed Quadratic Discriminant Feature Selected Broken Stick Regressive Deep Convolution Neural Learning Classification (QDFSBSRDCNLC) Technique is proposed for disease classification and hence yields prediction of turmeric crop. Initially, we gathered the images of turmeric crops with and without diseases. The images are collected from the turmeric research field at Bhavanisagar. Quadratic Discriminant Analysis (QDA) is utilized to select relevant features from a dataset, reducing dimensionality. In this paper, four models, named FCN8, PSP Net, MobileNetV3 (small), and Deep Lab V3 are chosen for semantic segmentation of disease in turmeric crops. Turmeric crop production predicts is an important part of modern agriculture, allowing farmers to make sensible choices and optimize resources. We can predict turmeric crop yields accurately by using modern data analysis approaches. Predictive models take into consideration variables such as weather, soil quality, and farming techniques. The experimental results demonstrated that MobileNetV3 (small) performed better than other established ones with the accuracy of 97.99%, IoU of 96.82%, and Coefficient of 97.80% for 50 epochs. The proposed QDFSBSRDCNLC Technique effectively classifies diseases and predicts the yield of turmeric crops, with MobileNetV3 (small) showing superior performance among the tested models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/0954898X.2025.2488881 | DOI Listing |