Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Solution-processable organic solar cells (OSCs) represent a promising renewable photovoltaic technology with significant potential for eco-compatible production. While high power conversion efficiencies (PCEs) have been achieved in OSCs, scaling this technology for high-throughput manufacturing remains challenging. Key reason lies in the lack of efficient control strategies for the complex and long-duration morphology evolution during high-speed coating process with ecofriendly solvents. Here, a donor-priority rapid aggregation process (DP-RAP) scheme is proposed to solve this issue by adjusting the aggregation kinetics of donor and acceptor components. DP-RAP enables blends with a nanoscale fiber network structure and favorable crystallinity, which contributes to balanced carrier transport and reduced recombination losses. As a result, the PCE is improved from 14.3% (reference) to 17.4% (DP-RAP) for ultra-high speed coated PM6:BTP-eC9 devices in atmosphere, which is one of the highest values for non-halogenated solvent-processed solar cells at coating speeds of 500 mm s. Moreover, the DP-RAP based devices remain a stable PCE of approximately 17.4% across a broad range of coating speeds (20-500 mm s), illustrating its tolerance to the varied manufacturing conditions. This work highlights a promising avenue for the high-speed, ecofriendly production of efficient OSCs, pushing the boundaries of practical manufacturing in renewable energy technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12279230 | PMC |
http://dx.doi.org/10.1002/advs.202502077 | DOI Listing |