Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The discovery of profound differences in the brain microbiota of Alzheimer's disease (AD) patients and age-matched controls (AMCs) raised questions of postmortem contamination and bacterial transport processes which could be informed by microspatial heterogeneities. We performed semiquantitative species-specific bacterial analyses on multiple micro biopsies from each of the 30 brain specimens (AD and controls). We trimmed ~1 mm of each specimen's edges for surface contaminants and made multiple sterile biopsy punches of the resultant core of each specimen. To identify species-specific abundances, we used our validated, semiquantitative, full-length 16S rRNA gene pan-domain amplification protocol followed by high-fidelity circular consensus sequencing performed on a Pacific Biosciences Sequel IIe instrument. Statistical analyses showed no significant increase in bacterial abundance on trimmed surfaces compared to core specimens, including , the most abundant species previously identified in AD. We did find evidence of substantial bacterial species abundance differences among micro-biopsies obtained from within individual tissue blocks supporting our hypothesis of microspatial heterogeneities. The autopsy brain specimens used in our analyses in this study and our previous publication were not contaminated prior to or postharvesting but we suggest that future microbiological analyses of brain specimens include similar types of edge-core comparison analyses. Further, the species-level bacterial abundance heterogeneities among specimens of the same tissue suggest that multiple symbiotic processes may be occurring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12029928PMC
http://dx.doi.org/10.3390/microorganisms13040807DOI Listing

Publication Analysis

Top Keywords

microspatial heterogeneities
12
brain specimens
12
postmortem contamination
8
alzheimer's disease
8
brain microbiota
8
microbiota alzheimer's
8
bacterial abundance
8
brain
5
bacterial
5
analyses
5

Similar Publications

Real world behaviour data is the most reliable reference to assess road safety in a specific road infrastructure context. However, its collection and implementation for road safety research in a rapid and portable manner is still challenging, facing data protection issues and the complexities to set up constant tracking mechanisms with their own power supply. To tackle these limitations, the Mobility Observation Box (MOB) provides a flexible data collection, to be used in subsequent video analysis.

View Article and Find Full Text PDF

In marine benthic environments, oxygen availability is highly variable across temporal and spatial scales. Such variability generates heterogeneous microhabitats in which organisms experience marked changes from saturated (i.e.

View Article and Find Full Text PDF

The discovery of profound differences in the brain microbiota of Alzheimer's disease (AD) patients and age-matched controls (AMCs) raised questions of postmortem contamination and bacterial transport processes which could be informed by microspatial heterogeneities. We performed semiquantitative species-specific bacterial analyses on multiple micro biopsies from each of the 30 brain specimens (AD and controls). We trimmed ~1 mm of each specimen's edges for surface contaminants and made multiple sterile biopsy punches of the resultant core of each specimen.

View Article and Find Full Text PDF

Background: Malaria is a major public health problem in the Central African Republic (CAR). Data on malaria epidemiology are often derived from confirmed cases of symptomatic malaria using passive detection approaches, with very limited knowledge of the extent of subclinical and submicroscopic infections.

Methods: A community-based cross-sectional study was conducted in Bangui, the capital of the CAR, to assess the prevalence of subclinical malaria parasitaemia.

View Article and Find Full Text PDF

For insects, life in water is challenging because oxygen supply is typically low compared with in air. Oxygen limitation may occur when oxygen levels or water flows are low or when warm temperatures stimulate metabolic demand for oxygen. A potential mechanism for mitigating oxygen shortages is behavior - moving to cooler, more oxygenated or faster flowing microhabitats.

View Article and Find Full Text PDF