Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Environmentally friendly biopolymer nanofibrous composite membranes with enhanced mechanical properties and thermal stability were fabricated via electrospinning with different compositions of polylactic acid (PLA) and cellulose acetate (CA). Firstly, PLA and CA composite membranes were prepared and optimized. Then, the optimized membranes were annealed at temperatures ranging from 80 °C to 140 °C, for annealing times between 30 and 90 min. The developed membranes were characterized by FE-SEM, XRD, FR-IT, TGA, DSC, tensile testing, water contact angle, and resistance to hydrostatic pressure. PLA 95-CA 5 was the optimum composite, with a tensile strength 9.3 MPa, an average fiber diameter of 432 nm, a water contact angle of 135.7°, and resistance to a hydrostatic pressure of 16.5 KPa. Annealing resulted in further improvements in different properties. The annealed membranes had thermally stable microporous structures, without shrinkage or deterioration in nanofiber structure, even at an annealing time of 90 min and an annealing temperature of 140 °C. By increasing either the annealing time or temperature, the crystallinity and rigidity of the nanofiber composite membranes were increased. The annealed membrane demonstrated a tensile strength of 12.3 MPa, a water contact angle of 139.2°, and resistance to a hydrostatic pressure of 36 KPa. Electrospinning of PLA-CA composite membranes with enhanced mechanical properties and thermal stability will pave the way for employing PLA-based membranes in various applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12030370PMC
http://dx.doi.org/10.3390/polym17081118DOI Listing

Publication Analysis

Top Keywords

composite membranes
20
enhanced mechanical
12
thermal stability
12
water contact
12
contact angle
12
resistance hydrostatic
12
hydrostatic pressure
12
membranes
9
pla-ca composite
8
membranes enhanced
8

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

Pulmonary surfactant protein SP-C regulates lipid vesicle uptake by alveolar type II cells and macrophages: Role of lipids, palmitoylation, and environment.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain. Electronic

Pulmonary surfactant protein C (SP-C) may play a key role in alveolar homeostasis by modulating vesicle uptake in alveolar cells. This study explores how SP-C regulates internalization of model unilamellar lipid vesicles by type II alveolar epithelial cells (AECII) and alveolar macrophages (AMϕ), focusing on the effect of lipid composition, palmitoylation state, and interactions with external stimuli like lipopolysaccharides (LPS) or the other hydrophobic surfactant protein SP-B. Using fluorescence-based techniques, we demonstrated that SP-C enhances vesicle uptake in a lipid-dependent manner.

View Article and Find Full Text PDF

Age-related changes in cardiolipin profile and functional consequences of altered fatty acid supply.

Biochim Biophys Acta Mol Cell Biol Lipids

September 2025

Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, Hans-Knöll-Str. 2, 07745, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1,

Cardiolipins (CLs) are primarily expressed in the inner mitochondrial membrane where they play essential roles in membrane architecture and mitochondrial functions. CLs have a unique structure characterized by four acyl chains with different stoichiometries such as chain length and degree of saturation. CL composition changes with disease and age, but it is largely unknown how dynamic changes affect mitochondrial function.

View Article and Find Full Text PDF

Construction of chitosan/wurtzite multiple sites on mesoporous halloysite and selective removal of Al(III) from rare earth ions solution: Microcalorimetry investigation.

Int J Biol Macromol

September 2025

School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China; School of Resources and Civil Engineering, GanNan University of Science and Technology, Ganzhou, 341000, China.

Herein, organic/inorganic multiple adsorption sites were constructed on halloysite to intensify the selective adsorption performance of the adsorbent for Al(III) in rare earth solutions. The adsorption heat behavior and thermodynamics of the composite for different ion systems were investigated using microcalorimetry. The results showed that chitosan formed a mesoporous membrane on the acid-treated calcined halloysite (HalH) substrate through a strong electron interaction between the nitrogen atom of the amino group and the oxygen atom of SiO structure on HalH.

View Article and Find Full Text PDF