98%
921
2 minutes
20
Ovarian cancer (OV) has the highest mortality rate among gynecological cancers. As OV progresses, tumor cells spread outside the ovaries to the peritoneal and abdominal cavities, forming cell clusters that float in the ascitic fluid caused by peritonitis carcinomatosa, leading to further dissemination and metastasis. These cell clusters are enriched with cancer stem cells (CSCs) which are responsible for treatment resistance, recurrence, and metastasis. Therefore, targeting CSCs is a potentially effective approach for treating OV. However, understanding how CSCs acquire treatment resistance and identifying targets against CSCs remains challenging. In this study, we demonstrate that 3D-spheroids of OV cell lines exhibit higher stemness than conventional adherent cells. Metabolomics profiling studies have revealed that 3D-spheroids maintain a high-energy state through increased glucose utilization in the citric acid cycle (TCA), efficient nucleotide phosphorylation, and elevated phosphocreatine as an energy buffer. We also found that nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme for NAD production, is highly expressed in OV. Furthermore, the approach based on NAMPT dependence rather than histology found NAMPT to be a potential therapeutic target against CSCs, while also serving as a prognostic indicator in OV. Moreover, we identified a previously unrecognized anti-tumor mechanism whereby disulfiram, an aldehyde dehydrogenase (ALDH) inhibitor, synergistically inhibited mitochondrial function when combined with NAMPT inhibitors - leading to cell cycle arrest in G2/M. Finally, the combination of a NAMPT inhibitor and disulfiram showed significant anti-tumor effects and extended survival in an animal model. Our findings demonstrate the potential of spheroids as a preclinical model for targeting OV CSCs and also indicate that the combination of NAMPT inhibitors and disulfiram is a promising therapeutic strategy to overcome recurrent OV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12032209 | PMC |
http://dx.doi.org/10.1038/s41419-025-07672-3 | DOI Listing |
Arterioscler Thromb Vasc Biol
September 2025
Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, China. (Q.D., X.Z., L.F., A.C., Z.L., Y.Y., J.Z., X.L., Y.L., J.Y.).
Background: Vascular calcification is very common in patients with chronic kidney disease and contributes to the increased risk of cardiovascular events. NAMPT (nicotinamide phosphoribosyltransferase), the rate-limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide, has been shown to exert an antiaging effect on vascular smooth muscle cells. However, whether NAMPT is involved in the regulation of vascular calcification remains unclear.
View Article and Find Full Text PDFCancers (Basel)
August 2025
Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, 41013 Seville, Spain.
: Pancreatic cancer (PC) is the seventh leading cause of cancer-related deaths worldwide, with its incidence rising each year. Despite its relatively low incidence, the aggressiveness of pancreatic cancer results in high mortality, with only 12% of patients surviving five years post-diagnosis. Surgical resection remains the only potentially curative treatment, but the tumor is often diagnosed at an advanced stage.
View Article and Find Full Text PDFBlood Neoplasia
August 2025
Department of Pathology, The University of Chicago, Chicago, IL.
Monosomy 7 (-7) and deletions of chromosome arm 7q (del(7q)) are prevalent high-risk cytogenetic abnormalities that often co-occur with del(17p) (harboring ). To identify novel targeted therapies based on specific vulnerabilities in high-risk myeloid malignancies, we investigated druggable, chromosome 7-encoded essential genes that are monoallelically deleted in the context of -7/del(7q), that is, collateral lethal genes. By mining genome-wide CRISPR-Cas9 screen data sets, we identified nicotinamide phosphoribosyltransferase () on 7q22.
View Article and Find Full Text PDFCell Death Discov
August 2025
The Fourth Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, 215123, China.
Nicotinamide adenine dinucleotide (NAD⁺) is a critical coenzyme involved in cellular metabolism, energy balance, and various physiological processes. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in NAD⁺ synthesis, regulating the NAD⁺ regeneration pathway. This review summarizes the multiple roles of NAMPT in both physiological and pathological states, particularly in cellular stress, aging, metabolic disorders, and cancer.
View Article and Find Full Text PDFbioRxiv
July 2025
Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.
Purpose: New treatments are needed to improve survival in children with rhabdomyosarcoma (RMS). NAD⁺ biosynthesis, regulated by the enzymes NAPRT and NAMPT, represents a metabolic vulnerability due to high NAD⁺ turnover in cancers. Although NAMPT inhibitors (NAMPTi) show preclinical promise, clinical translation has been limited by toxicity and the lack of predictive biomarkers.
View Article and Find Full Text PDF