A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nanoseed-based physically unclonable function for on-demand encryption. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A physically unclonable function (PUF) is a promising hardware-based cryptographic primitive to prevent confidential information leakage. However, conventional techniques, such as weak and strong PUFs, have limitations in overcoming the trade-off between security and storage volume. This study introduces nanoseed-based PUFs that overcome the drawbacks of conventional PUFs using optical and electrical randomness originated from nanoseeds and a unique on-demand cryptographic algorithm. Ideally mixed PbS quantum dots and Ag nanocrystals in the same medium are exploited as nanoseeds to simultaneously promote independent optical and electrical randomness. The number of secured keys that can be generated on-demand by combining the optical and electrical features in parallel using shuffling method is almost infinite (>10 per square millimeter). The proposed PUF achieves a near-ideal Hamming distance in uniqueness and randomness tests, validating its cryptographic efficacy. Last, storage-free and on-demand PUF with the shuffling method are demonstrated using smartphones, realizing manufacturer-/user-friendly cryptography system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024658PMC
http://dx.doi.org/10.1126/sciadv.adt7527DOI Listing

Publication Analysis

Top Keywords

optical electrical
12
physically unclonable
8
unclonable function
8
electrical randomness
8
shuffling method
8
nanoseed-based physically
4
on-demand
4
function on-demand
4
on-demand encryption
4
encryption physically
4

Similar Publications