98%
921
2 minutes
20
Background: Rectal cancer represents a major cause of mortality in the United States. Management strategies are highly individualized, depending on patient-specific factors and tumor characteristics. The therapeutic landscape is rapidly evolving, with notable advancements in response rates to both radiotherapy and chemotherapy. For locally advanced rectal cancer (LARC, defined as up to T3-4 N+), the standard of care involves total mesorectal excision (TME) following neoadjuvant chemoradiotherapy (nCRT). Magnetic resonance imaging (MRI) has emerged as the gold standard for local tumor staging and is increasingly pivotal in post-treatment restaging.
Aim: In our study, we proposed an MRI-based radiomic model to identify characteristic features of peritumoral mesorectal fat in two patient groups: good responders and poor responders to neoadjuvant therapy. The aim was to assess the potential presence of predictive factors for favorable or unfavorable responses to neoadjuvant chemoradiotherapy, thereby optimizing treatment management and improving personalized clinical decision-making.
Methods: We conducted a retrospective analysis of adult patients with LARC who underwent pre- and post-nCRT MRI scans. Patients were classified as good responders (Group 0) or poor responders (Group 1) based on MRI findings, including tumor volume reduction, signal intensity changes on T2-weighted and diffusion-weighted imaging (DWI), and alterations in the circumferential resection margin (CRM) and extramural vascular invasion (EMVI) status. Classification criteria were based on the established literature to ensure consistency. Key clinical and imaging parameters, such as age, TNM stage, CRM involvement, and EMVI presence, were recorded. A radiomic model was developed using the LASSO algorithm for feature selection and regularization from 107 extracted radiomic features.
Results: We included 44 patients (26 males and 18 females) who, following nCRT, were categorized into Group 0 (28 patients) and Group 1 (16 patients). The pre-treatment MRI analysis identified significant features (out of 107) for each sequence based on the Mann-Whitney test and -test. The LASSO algorithm selected three features (shape_Sphericity, shape_Maximum2DDiameterSlice, and glcm_Imc2) for the construction of the radiomic logistic regression model, and ROC curves were subsequently generated for each model (AUC: 0.76).
Conclusions: We developed an MRI-based radiomic model capable of differentiating and predicting between two groups of rectal cancer patients: responders and non-responders to neoadjuvant chemoradiotherapy (nCRT). This model has the potential to identify, at an early stage, lesions with a high likelihood of requiring surgery and those that could potentially be managed with medical treatment alone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031397 | PMC |
http://dx.doi.org/10.3390/tomography11040044 | DOI Listing |
JAMA
September 2025
Division of Surgery and Interventional Science, UCL, London, United Kingdom.
Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.
View Article and Find Full Text PDFCancer Causes Control
September 2025
College of Public Health, Iowa Cancer Registry, Epidemiology Department, University of Iowa, Iowa City, IA, USA.
Purpose: Human papillomavirus (HPV) causes oral and anogenital cancers, the incidence of which is increasing. Late-stage diagnosis is associated with increased mortality. Neighborhood-level characteristics and distance to place of diagnosis may impact timely diagnosis.
View Article and Find Full Text PDFAnn Surg Oncol
September 2025
HepatoBiliaryPancreatic Surgery, AOU Careggi, Department of Experimental and Clinical Medicine (DMSC), University of Florence, Florence, Italy.
Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.
Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.
Cancer Sci
September 2025
Department of Surgery, Asahikawa Medical University, Asahikawa, Japan.
Despite recent advances in neoadjuvant strategies for locally advanced rectal cancer (LARC), optimal chemotherapy regimens and the role of genetic biomarkers in guiding treatment remain unclear. Moreover, predictive markers are urgently needed for radiation-sparing strategies. Therefore, we aimed to assess the predictive and prognostic value of TP53, KRAS, and APC mutations in patients with LARC undergoing neoadjuvant chemotherapy (NACT) by retrospectively analyzing 43 patients with LARC who underwent NACT without radiation.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
Department of Surgery, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE.