A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microgel with a Core-Shell Particulate Structure Formed via Spinodal Decomposition of a Diblock Ionomer Containing a Doped Hydrophobic Moiety. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study explored the formation of soft colloidal particles from a diblock ionomer (DI) with the monomeric composition (acrylonitrile)-co-(glycidyl methacrylate)-b-(3-sulfopropyl methacrylate potassium)-abbreviated as (AG)S, where x >> z > y. A colloidal dispersion was generated by introducing water into the pre-prepared DMSO solutions of DI, which led to micelle formation and subsequent coagulation. The assembly of the hydrophobic (AG) blocks was influenced by water content and chain conformational flexibility (the ability to adopt various forms of conformation). The resulting microgel structure (in particle form) consists of coagulated micelles characterized by discrete internal hydrophobic gel domains and continuous external hydrophilic gel layers. Characterization methods included light scattering, zeta potential analysis, and particle size distribution measurements. In contrast, the copolymer (AG) chains form random coil aggregates in DMSO-HO mixtures, displaying a chain packing state distinct from the hydrophobic gel domains as aforementioned. Additionally, the amphiphilic glycidyl methacrylate (G) units within the (AG) block were found to modulate the microgel dimensions. Notably, the nanoscale hydrogel corona exhibits high accessibility to reactive species in aqueous media. The typical microgel has a spherical shape with a diameter ranging from 50 to 120 nm. It exhibits a zeta potential of -65 mV in a neutral aqueous medium; however, it may precipitate if the metastable colloidal dispersion state cannot be maintained. Its properties could be tailored through adjusting the internal chain conformation, highlighting its potential for diverse applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12027152PMC
http://dx.doi.org/10.3390/gels11040231DOI Listing

Publication Analysis

Top Keywords

diblock ionomer
8
colloidal dispersion
8
hydrophobic gel
8
gel domains
8
zeta potential
8
microgel
4
microgel core-shell
4
core-shell particulate
4
particulate structure
4
structure formed
4

Similar Publications