A Planar-Gate Graphene Field-Effect Transistor Integrated Portable Platform for Rapid Detection of Colon Cancer-Derived Exosomes.

Biosensors (Basel)

Key Laboratory of High-Efficiency and Clean Mechanical Manufacture, Ministry of Education, Department of Mechanical Engineering, Shandong University, Jinan 250100, China.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early diagnosis of diseases would significantly increase the survival rate of cancer patients. However, current screening methods are complex and costly, making them unsuitable for rapid health diagnosis in daily life. Here, we develop a portable platform based on a planar-gate graphene field-effect transistor functionalized with polydopamine self-assembled film (PDA-GFET), capable of identifying colon cancer through the detection of EpCAM protein, which is expressed on colon cancer-derived exosomes, in clinical samples within 10 min. The PDA self-assembled film on the graphene and gate surface enhances the biosensor's functionalization area while suppressing non-specific adsorption, thereby achieving detection limits as low as 112 particles/mL. In addition, the PDA-GFET-based detection platform was used to identify EpCAM protein in real clinical samples from healthy individuals and colon cancer patients within 10 min, and the two showed significant differences ( < 0.001). Results indicate that the proposed PDA-GFET-based detection platform is expected to be a potential tool for the early diagnosis of colon cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12025066PMC
http://dx.doi.org/10.3390/bios15040207DOI Listing

Publication Analysis

Top Keywords

colon cancer
12
planar-gate graphene
8
graphene field-effect
8
field-effect transistor
8
portable platform
8
colon cancer-derived
8
cancer-derived exosomes
8
early diagnosis
8
cancer patients
8
self-assembled film
8

Similar Publications

Background: To evaluate predictors of outcomes in colorectal liver metastases (CLM) patients undergoing 90Y radioembolization (TARE), focusing on the impact of tumor absorbed dose.

Materials And Methods: Patients' characteristics and dosimetry assessments were analyzed in 231 patients undergoing 329 TARE sessions from 09/2009 to 07/2023. Response was assessed using RECIST1.

View Article and Find Full Text PDF

The colon exhibits higher propensity for tumour development than ileum. However, the role of immune microenvironment differences in driving this disparity remains unclear. Here, by comparing paired ileum and colon samples from patients with colorectal cancer (CRC) and healthy donors, we identified ileum-enriched CD160CD8 T cells with previously unrecognized characteristics, including resistance to terminal exhaustion and strong clonal expansion.

View Article and Find Full Text PDF

Discovery of 2-tetrahydroisoquinoline substituted quinazoline derivatives as lysine methyltransferase G9a inhibitors with in vivo antitumor efficacy.

Eur J Med Chem

September 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; State Key Laboratory of Innovative Immunotherapy, Central Research Institute,

Overexpression of protein lysine methyltransferase G9a, which catalyzes mono- and di-methylation of histone H3K9 and non-histone proteins, is closely associated with poor prognosis and metastasis of various cancers. Here, we designed and synthesized a series of novel G9a inhibitors bearing 2-tetrahydroisoquinoline substituted quinazoline scaffold. Among them, compound 31 with 2-dioxole fused tetrahydroisoquinoline exhibited the most potent inhibitory effects against G9a with an IC value of 0.

View Article and Find Full Text PDF

IRF7 drives resistance to oncolytic virotherapy by restricting viral replication and suppressing antitumor immunity.

Biochem Biophys Res Commun

September 2025

State Key Laboratory of Medicinal Chemical Biology and College of Life Science, Nankai University, Tianjin, China. Electronic address:

Oncolytic viruses (OVs) represent a promising approach for cancer immunotherapy by inducing direct tumor lysis and stimulating antitumor immunity. However, tumor-intrinsic resistance remains a major barrier to their efficacy. In this study, we established an OV-resistant MC38 colon cancer model (MC38) and identified interferon regulatory factor 7 (IRF7), a key regulator of type I interferon signaling, as significantly upregulated in resistant cells.

View Article and Find Full Text PDF