Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Classical molecular dynamics simulations were performed to provide physical insight into the impact of interfacial structure on the heterogeneous nucleation of amorphous calcium carbonate (ACC, CaCO·HO) and amorphous magnesium carbonate (AMC, MgCO·HO) by using α-quartz as a model substrate. Interfacial structure and energies were computed for ACC and AMC in contact with the (100), (001), and (101) α-quartz surfaces. The simulations showed α-quartz surfaces drew water molecules out of the carbonate nuclei to form a partial hydration layer. The formation of a partial hydration layer and its disruption to the ACC/AMC structure meant the α-quartz-ACC/AMC interfaces were not energetically favored relative to separate α-quartz-water and ACC/AMC-water interfaces and, thus, homogeneous ACC/AMC nucleation was favored over heterogeneous nucleation. The CMD simulations hence provided an atomic-level explanation for a reported nonclassical growth mechanism whereby carbonate minerals grow via homogeneous nucleation and subsequent surface attachment of amorphous intermediates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.5c00629 | DOI Listing |