98%
921
2 minutes
20
Background: Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.
Methods: AIM ECG-AI is a multicenter, cluster-randomized trial recruiting and randomizing clinicians to receive access to the CDSS (intervention) or provide usual care. Clinicians are recruited from 5 geographically distinct health systems and clustered at the care team level. AIM ECG-AI will evaluate clinical care provided during >32,000 eligible clinical encounters with adult patients with no history of low LVEF and who have a digital ECG documented within the health system's EHR, with 90 day follow up.
Results: Study data includes clinician surveys, study software metrics, and EHR data as a read-out for clinician decision-making. AIM ECG-AI will evaluate detection of left ventricular ejection fraction ≤40 % by echocardiography, with exploratory endpoints. Subgroup analyses will evaluate the health system, clinician, and patient-level characteristics associated with outcomes (NCT05867407).
Conclusion: AIM ECG-AI is the first multisite clinical evaluation of an EHR-integrated, point-of-care CDSS to provide ECG-AI results in the clinical workflow. The findings will provide valuable insights for clinically focused software design to bring AI into routine clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12017965 | PMC |
http://dx.doi.org/10.1016/j.ahjo.2025.100528 | DOI Listing |
BMJ Health Care Inform
June 2025
Department of Cardiology, Catharina Hospital, Eindhoven, Netherlands.
Objectives: Most patients presenting with chest pain in the emergency medical services (EMS) setting are suspected of non-ST-elevation acute coronary syndrome (NSTE-ACS). Distinguishing true NSTE-ACS from non-cardiac chest pain based solely on the ECG is challenging. The aim of this study is to develop and validate a convolutional neural network (CNN)-based model for risk stratification of suspected NSTE-ACS patients and to compare its performance with currently available prehospital diagnostic tools.
View Article and Find Full Text PDFAm Heart J Plus
June 2025
Anumana, Inc., Cambridge, MA, United States of America.
Background: Artificial intelligence (AI) enabled algorithms can detect or predict cardiovascular conditions using electrocardiogram (ECG) data. Clinical studies have evaluated ECG-AI algorithms, including a recent single-center study which evaluated outcomes when clinicians were provided with ECG-AI results. A Multicenter Pragmatic IMplementation Study of ECG-AI-Based Clinical Decision Support Software to Identify Low LVEF (AIM ECG-AI) will evaluate clinical impacts of clinical decision support software (CDSS) integrated within the electronic health record (EHR) to provide point-of-care ECG-AI results to clinicians during routine outpatient care.
View Article and Find Full Text PDFmedRxiv
June 2024
Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT.
Eur Heart J Digit Health
March 2024
Department of Cardiology, University Medical Center Utrecht, Utrecht University, Internal ref E03.511, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
Aims: Many portable electrocardiogram (ECG) devices have been developed to monitor patients at home, but the majority of these devices are single lead and only intended for rhythm disorders. We developed the miniECG, a smartphone-sized portable device with four dry electrodes capable of recording a high-quality multi-lead ECG by placing the device on the chest. The aim of our study was to investigate the ability of the miniECG to detect occlusive myocardial infarction (OMI) in patients with chest pain.
View Article and Find Full Text PDFEuropace
February 2024
RADar Learning and Innovation Centre, AZ Delta, Deltalaan 1, 8800 Roeselare, Belgium.
Aims: Guidelines recommend opportunistic screening for atrial fibrillation (AF), using a 30 s single-lead electrocardiogram (ECG) recorded by a wearable device. Since many patients have paroxysmal AF, identification of patients at high risk presenting with sinus rhythm (SR) may increase the yield of subsequent long-term cardiac monitoring. The aim is to evaluate an AI-algorithm trained on 10 s single-lead ECG with or without risk factors to predict AF.
View Article and Find Full Text PDF