Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phenotypic changes in the morphology and internal organization of cells can indicate perturbations in cell functions. Therefore, imaging-based high-throughput phenotypic profiling (HTPP) applications such as Cell Painting (CP) play an important role in basic and translational research, drug discovery, and regulatory toxicology. Here we present the Cell Painting PLUS (CPP) assay, an efficient, robust and broadly applicable approach that further expands the versatility of available HTPP methods and offers additional options for addressing mode-of-action specific research questions. An iterative staining-elution cycle allows multiplexing of at least seven fluorescent dyes that label nine different subcellular compartments and organelles including the plasma membrane, actin cytoskeleton, cytoplasmic RNA, nucleoli, lysosomes, nuclear DNA, endoplasmic reticulum, mitochondria, and Golgi apparatus. In this way, CPP significantly expands the flexibility, customizability, and multiplexing capacity of the original CP method and, importantly, also improves the organelle-specificity and diversity of the phenotypic profiles due to the separate imaging and analysis of single dyes in individual channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022024PMC
http://dx.doi.org/10.1038/s41467-025-58765-8DOI Listing

Publication Analysis

Top Keywords

cell painting
12
multiplexing capacity
8
phenotypic profiling
8
iterative staining-elution
8
cell
5
painting expanding
4
expanding multiplexing
4
capacity cell
4
cell painting-based
4
phenotypic
4

Similar Publications

Model-driven meta-analysis establishes a new consensus view: Inhibitory neurons dominate BOLD-fMRI responses.

Comput Biol Med

September 2025

Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine

Functional magnetic resonance imaging (fMRI) is a pivotal tool for mapping neuronal activity in the brain. Traditionally, the observed hemodynamic changes are assumed to reflect the activity of the most common neuronal type: excitatory neurons. In contrast, recent experiments, using optogenetic techniques, suggest that the fMRI-signal could reflect the activity of inhibitory interneurons.

View Article and Find Full Text PDF

Introduction: Efficient preclinical prediction of cardiovascular side effects poses a pivotal challenge for the pharmaceutical industry. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming increasingly important in this field due to inaccessibility of human native cardiac tissue. Current preclinical hiPSC-CMs models focus on functional changes such as electrophysiological abnormalities, however other parameters, such as structural toxicity, remain less understood.

View Article and Find Full Text PDF

Autoimmune disease occurs when immune cells mistakenly identify specific molecules, termed antigens, on healthy cells. There are no cures for these diseases, and existing treatments - including monoclonal antibodies - do not specifically target dysfunctional cells. These challenges have motivated interest in therapies that could achieve antigen-specific immune tolerance.

View Article and Find Full Text PDF

Alternate dyes for image-based profiling assays.

SLAS Discov

August 2025

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.. Electronic address:

Background: Cell Painting, the leading image-based profiling assay, involves staining plated cells with six dyes that mark the different compartments in a cell. Such profiles can then be used to discover connections between samples (whether different cell lines, different genetic treatments, or different compound treatments) as well as to assess particular features impacted by each treatment. Researchers may wish to vary the standard dye panel to assess particular phenotypes, or image cells live while maintaining the ability to cluster profiles overall.

View Article and Find Full Text PDF

Ensuring biostable drinking water is a growing priority for drinking water utilities, especially in non- or minimally chlorinated distribution systems where microbial regrowth is controlled through nutrient limitation. In this study, we evaluated the efficacy of ultrafiltration (UF) and nanofiltration (NF) in reducing total organic carbon (TOC) and their impact on the microbiology in a pilot-scale drinking water distribution system over 7 weeks. NF achieved significantly higher TOC removal (75.

View Article and Find Full Text PDF