Hypoxic conditions by Raman microspectroscopy - Reprogramming of fatty acids and glucose metabolism during colon cancer progression.

Spectrochim Acta A Mol Biomol Spectrosc

Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, Wroblewskiego 15, 93-590 Lodz, Poland.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellular respiration is the primary metabolic process for producing the energy (ATP) needed for survival. Disruptions in this process can lead to various diseases, including colon cancer. This paper reviews the current understanding of how excess fatty acids (FAs) and glucose (Glc) alter metabolic pathways. We focused on the impact of unsaturated fatty acids (UFAs) (eicosapentaenoic acid (EPA), linoleic acid (LA)), saturated fatty acid (SFA) (palmitic acid (PA)), and glucose on healthy human colon cells (CCD-18 Co) and cancerous colon cells (Caco-2) using Raman microspectroscopy. Our study examined the metabolic abnormalities in mitochondria and lipid droplets caused by the external intake of FAs and glucose. The results indicate that the peaks at 750 cm, 1004 cm, 1256 cm, 1444 cm, and 1656 cm can serve as Raman biomarkers for monitoring metabolic pathways in colon cancer. We proved that oxidative metabolism towards glycolysis allows maintaining redox homeostasis and enables the survival and proliferation of cancer cells in hypoxic conditions. Our findings show that comparing control cells with cells supplemented with UFAs, SFA, and glucose can help detect metabolic abnormalities. Specifically, supplementation with UFAs reduces the intensity of the bands at 750 cm and 1004 cm, while SFA and glucose increase their intensity. For the bands at 1256 cm, 1444 cm, and 1656 cm, palmitic acid and glucose decrease the intensity, whereas linoleic acid increases it. This paper introduces new experimental techniques, such as Raman microspectroscopy and imaging, to track and understand the metabolic changes in colon cells caused by FAs and glucose under hypoxic conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.126275DOI Listing

Publication Analysis

Top Keywords

hypoxic conditions
12
raman microspectroscopy
12
fatty acids
12
colon cancer
12
fas glucose
12
colon cells
12
glucose
8
metabolic pathways
8
linoleic acid
8
palmitic acid
8

Similar Publications

Endothelial Colony-Forming Cells (ECFCs) are recognized as key vasculogenic progenitors in humans and serve as valuable liquid biopsies for diagnosing and studying vascular disorders. In a groundbreaking study, Anceschi et al. present a novel, integrative strategy that combines ECFCs loaded with gold nanorods (AuNRs) to enhance tumor radiosensitization through localized hyperthermia.

View Article and Find Full Text PDF

Orthopedic complications of sickle-cell disease in children.

Orthop Traumatol Surg Res

September 2025

Service de Chirurgie Orthopédique Pédiatrique, Hôpital Universitaire Robert-Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, 48 Boulevard Sérurier, 75019 Paris, France.

Sickle cell disease is the most common serious genetic disease in the world. It is a systemic disease, characterized by vaso-occlusive phenomena, especially in the bone capillary network. Orthopedic complications are thus the most common, with a strong impact on quality of life.

View Article and Find Full Text PDF

This study investigated the effects of fermentable fiber and polyphenol supplementation on mood and cognition following rapid ascent to simulated 4300 m. Healthy adults (n = 13, 21 ± 3 years) participated in a randomized, placebo-controlled crossover study consisting of three, 2-week phases separated by ≥1 week. Food products containing the fiber and polyphenol supplement or placebo were consumed during each phase.

View Article and Find Full Text PDF

Pompe disease is an autosomal recessive neuromuscular disorder characterized by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for lysosomal glycogen degradation in all cells. Respiratory distress is a common symptom among patients with Pompe disease resulting from weakness of primary respiratory neuromuscular units of the diaphragm and genioglossus and the motor neurons which innervate them. The only FDA approved treatment is enzyme replacement therapy (ERT) of recombinant human GAA (rhGAA) which slows the decline of motor function and extends life expectancy.

View Article and Find Full Text PDF

In this edition of Gene's "Editor's Corner" we summarize the complex interactions of different molecular mechanisms behind the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). The topic is relevant, as the therapeutic options for HIE are limited, it is important to have as much knowledge as possible about the molecular processes underlying the disease. In the recent issue of Gene (Gene 952, 2025, 149363), Wang et al.

View Article and Find Full Text PDF