Estimation of Active Tension in Cardiac Microtissues by Solving a PDE-Constrained Optimization Problem.

Int J Numer Method Biomed Eng

Department of Computational Physiology, Simula Research Laboratory, Oslo, Norway.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microphysiological systems (MPS) provide a highly controlled environment for the development and testing of human-induced pluripotent stem cell-based cardiac microtissues, with promising applications in disease modeling and drug development. Through optical measurements in such systems, we can quantify mechanical features such as motion and velocity during contraction. While these are useful for evaluating relative changes in muscle twitch, it remains challenging to quantify and characterize the actual active tension driving the contraction. Here, we aimed to quantify the active tension over time and space by solving an inverse problem in cardiac mechanics expressed by partial differential equations (PDEs). We formulated this as a PDE-constrained optimization problem based on a mechanical model defined for two-dimensional representations of the microtissues. Our optimization predicts active tension generated by the tissue as well as the fiber direction angle distribution. We used synthetic as well as experimental data to investigate the performance of our inversion protocol. Next, we employed the procedure to evaluate active tension changes in drug escalation studies of the inotropes omecamtiv mecarbil and Bay K8644. For both drug compounds, we observed a comparable increase in displacement, strain, and model-predicted active strain values upon higher drug doses. The estimated active tension was observed to be highest in the middle part of the tissue, and the fiber direction was mostly aligned with the longitudinal direction of the tissue. The computational framework presented here allows for spatiotemporal estimation of active tension in cardiac microtissues based on optical measurements. In the future, such methodologies might develop into valuable tools in drug development protocols.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12020455PMC
http://dx.doi.org/10.1002/cnm.70034DOI Listing

Publication Analysis

Top Keywords

active tension
28
cardiac microtissues
12
estimation active
8
tension cardiac
8
pde-constrained optimization
8
optimization problem
8
drug development
8
optical measurements
8
fiber direction
8
tension
7

Similar Publications

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.

View Article and Find Full Text PDF

Emulsion formation presents a significant operational challenge in oil production, necessitating the continuous development of novel and effective demulsification methods. However, the lack of a fundamental understanding of the mechanisms that regulate the formation of these emulsions significantly complicates this process. In this study, we systematically investigated the influence of Ca ions on crude oil emulsions.

View Article and Find Full Text PDF

Postoperative infections following orthopedic fixation can lead to devastating consequences, particularly in patients with comorbidities such as diabetes mellitus. We present a rare case of a 61-year-old female patient with a patella fracture treated with tension band wiring who developed a severe polymicrobial infection resulting in complete destruction of the patellar tendon. Multiple debridements, removal of implants, and prolonged targeted antibiotic therapy were necessary.

View Article and Find Full Text PDF

Background: This study aimed to evaluate how subscapularis tendon repair influences joint loads in relation to humeral offset and arm position.

Patients And Methods: Two fresh-frozen, whole-body cadaveric shoulders underwent a reverse total shoulder arthroplasty (rTSA) on the humeral side using an internal proprietary load-sensing system (LSS) (Goldilocks, Statera Medical, Montreal, Canada). In addition to three "complex" Activity Daily Life positions ("behind the back", "overhead reach", and "across the chest"), four standard postures (external rotation, extension, abduction, and flexion) were used to record the glenohumeral loads (Newtons) and their locations applied to the implant.

View Article and Find Full Text PDF