98%
921
2 minutes
20
Purifying selection is expected to prevent the accumulation of transposable elements (TEs) within their host, especially when located in and around genes and if affected by epigenetic silencing. However, positive selection may favor the spread of TEs, causing genomic imprinting under parental conflict, as genomic imprinting allows parent-specific influence over resource accumulation to the progeny. Concomitantly, the number and frequency of TE insertions in natural populations are conditioned by demographic events. In this study, we aimed to test how demography and selective forces interact to affect the accumulation of TEs around genes, depending on their epigenetic silencing, with a particular focus on imprinted genes. To this aim, we compared the frequency and distribution of TEs in Arabidopsis lyrata from Europe and North America. Generally, we found that TE insertions showed a lower frequency when they were inserted in or near genes, especially TEs targeted by epigenetic silencing, suggesting purifying selection at work. We also found that many TEs were lost or got fixed in North American populations during the colonization and the postglacial range expansion from refugia of the species in North America, as well as during the transition to selfing, suggesting a potential "TE load." Finally, we found that silenced TEs increased in frequency and even tended to reach fixation when they were linked to imprinted genes. We conclude that in A. lyrata, genomic imprinting has spread in natural populations through demographic events and positive selection acting on silenced TEs, potentially under a parental conflict scenario.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12159739 | PMC |
http://dx.doi.org/10.1093/molbev/msaf093 | DOI Listing |
Nucleic Acids Res
September 2025
Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom.
The mammary gland, which primarily develops postnatally, undergoes significant changes during pregnancy and lactation to facilitate milk production. Through the generation and analysis of 480 transcriptomes, we provide the most detailed allelic expression map of the mammary gland, cataloguing cell-type-specific expression from ex-vivo purified cell populations over 10 developmental stages, enabling comparative analysis. The work identifies genes involved in the mammary gland cycle, parental-origin-specific and genetic background-specific expression at cellular and temporal resolution, genes associated with human lactation disorders and breast cancer.
View Article and Find Full Text PDFHum Reprod Update
September 2025
Faculty of Medicine, Paris Cité University, Paris, France.
Background: Infertility is a growing global challenge, with ARTs significantly improving birth rates for infertile couples. However, ART conceptions are associated with a higher risk of negative obstetrical and perinatal outcomes, with potential long-term effects on offspring health. Many pre-implantation embryos exhibit abnormal morphokinetics, implantation failure, or arrested development.
View Article and Find Full Text PDFMol Biol Evol
September 2025
Evolutionary Ecology and Infection Biology, Department of Biology, Lund University, SE-22362 Lund, Sweden.
Generalist parasites must adapt to diverse host environments to ensure their survival and transmission. These adaptations can involve fixed genetic responses, transcriptional plasticity, or epigenetic mechanisms. The avian malaria parasite Plasmodium homocircumflexum offers an ideal model for studying transcriptional variation across hosts.
View Article and Find Full Text PDFMol Autism
August 2025
Dept. of Clinical Genetics, Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands.
Background: Angelman Syndrome (AS) is a severe neurodevelopmental disorder with only symptomatic treatment currently available. The primary cause of AS is loss of functional UBE3A protein. This can be caused by deletions in the maternal 15q11-q13 region, maternal AS-imprinting center defects (mICD), paternal uniparental disomy of chromosome 15 (UPD) or mutations within the UBE3A gene.
View Article and Find Full Text PDFGenes (Basel)
July 2025
Medical Genetics and Genomic Unit, San Bortolo Hospital, 36100 Vicenza, Italy.
Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare, often fatal congenital disorder characterized by severe neonatal respiratory distress and associated with complex multisystem malformations. In approximately 90% of cases, the condition is linked to deletions or mutations affecting the gene or its upstream enhancer region on chromosome 16q24.1.
View Article and Find Full Text PDF