In-Situ Monitoring and Control of Additive Friction Stir Deposition.

Materials (Basel)

Advanced Manufacturing Research Centre North-West, University of Sheffield, Blackburn BB2 7HP, UK.

Published: March 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Additive friction stir deposition (AFSD) is a solid-state AM method that feeds, plasticizes, and deposits solid bars using frictional heat. Although the AFSD is a promising method, its limited technology readiness level precludes its wider use. The use of optimum process parameters is critical for achieving successful results, and closed-loop control of process parameters can improve quality even further by reacting to and resolving any unanticipated issues that arise during the process. This article investigates the utilization of a process monitoring setup including various sensors to examine temperatures, forces, vibrations, and sound during the AFSD of the Al6061 aluminum alloy. Furthermore, it benchmarks the outcomes of the same process' parameter set with or without utilizing a proportional-integral-derivative (PID). Large thermal gradients were observed at various locations of the deposit. Significant fluctuations in temperature and force were demonstrated for the initial layers until stability was reached as the height of the deposit increased. It has been shown that the change in the process parameters may lead to undesired results and can alter the deposit shape. Finally, residual stresses were investigated using the contour measurement technique, which revealed compressive stresses at the core of the part and tensile stresses in the outer regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11989646PMC
http://dx.doi.org/10.3390/ma18071509DOI Listing

Publication Analysis

Top Keywords

process parameters
12
additive friction
8
friction stir
8
stir deposition
8
process
5
in-situ monitoring
4
monitoring control
4
control additive
4
deposition additive
4
deposition afsd
4

Similar Publications

Electrically Conductive Hydrogels for Wound Healing.

Adv Wound Care (New Rochelle)

September 2025

Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.

Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.

View Article and Find Full Text PDF

Generalized Taylor dispersion of chiral microswimmers.

Philos Trans A Math Phys Eng Sci

September 2025

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan.

Transport phenomena of microswimmers in fluid flows play a crucial role in various biological processes, including bioconvection and cell sorting. In this article, we investigate the dispersion behaviour of chiral microswimmers in a simple shear flow using the generalized Taylor dispersion theory, inspired by biased locomotion of bacterial rheotaxis swimmers. We thus focused on the influence of shear-induced torque effects due to particle chirality, employing an extended Jeffery equation for individual deterministic dynamics.

View Article and Find Full Text PDF

A transition of dynamic rheological responses of single cells: from fluid-like to solid-like.

Biophys J

September 2025

Laboratory for Multiscale Mechanics and Medical Science, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

The mechanical properties of cells are crucial for elucidating various physiological and pathological processes. Cells are found to exhibit a universal power-law rheological behavior at low frequencies. While they behave in a different manner at high frequency regimes, which leaves the transition region largely unexplored.

View Article and Find Full Text PDF

Green synthesis of silver nanoparticles using Ocimum sanctum for efficient Congo red dye removal: a response surface methodology approach.

Environ Monit Assess

September 2025

Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore, Tamil Nadu, 641021, India.

Synthetic dyes, such as Congo red (CR), pose serious threats to human health and aquatic ecosystems because of their carcinogenicity and resistance to degradation, necessitating the development of efficient and eco-friendly remediation strategies. In this study, silver nanoparticles (AgNPs) were synthesized via a green method using Ocimum sanctum (holy basil) leaf extract and applied for CR dye removal from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) based on Box-Behnken design (BBD), evaluating the influence of key parameters including pH, AgNP dosage, initial dye concentration, contact time, and temperature.

View Article and Find Full Text PDF

Population size in stochastic discrete-time ecological dynamics.

J Math Biol

September 2025

Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX, 77843-3368, United States.

We study how environmental stochasticity influences the long-term population size in certain one- and two-species models. The difficulty is that even when one can prove that there is coexistence, it is usually impossible to say anything about the invariant probability measure which describes the coexisting species. We are able to circumvent this problem for some important ecological models by noticing that the per-capita growth rates at stationarity are zero, something which can sometimes yield information about the invariant probability measure.

View Article and Find Full Text PDF