98%
921
2 minutes
20
This study investigates the effects of high-pressure processing (HPP) on the physicochemical and structural properties of konjac glucomannan (KGM)/zeaxanthin (ZEA) composite-colored gel. Gels treated with varying pressures and holding times were analyzed, with untreated samples serving as the control. The results indicate that HPP at 300 MPa for 15 min significantly improved pigment retention and water-holding capacity by 14.58 % and 1.02 %, respectively, while also enhancing gel hardness and chewiness. Structural analysis revealed that HPP increased enthalpy change (ΔH) and relative crystallinity by 44.83 % and 20.32 %, respectively, contributing to improved thermal stability. Spectroscopic analysis further confirmed that HPP strengthened hydrophobic and hydrogen bonding interactions within the complex, leading to the formation of a denser three-dimensional network structure. These findings highlight the potential of HPP as an effective approach to improve the stability and functionality of plant-based colored gels, providing valuable insights for the development of functional konjac gel products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2025.144356 | DOI Listing |
Food Res Int
November 2025
Faculdade de Engenharia de Alimentos (FEA), Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato, 80, 13083-862, Campinas, São Paulo, Brazil. Electronic address:
The hydrolysis of biomass in fermentative processes often faces the difficulty of generating inhibitory products. Its reduction or removal is essential to enable the use of agro-industrial waste, such as cashew apple bagasse. Therefore, this study aimed to find an optimized condition for the hydrolysis of cashew apple bagasse by subcritical water and to introduce an in-line pre-purification process.
View Article and Find Full Text PDFFood Res Int
November 2025
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hu
In this study, the effects of high hydrostatic pressure (HHP)-mediated alterations in matrix composition on the bioaccessibility of carotenoids in satsuma mandarin juice were assessed. Results showed that the total carotenoid content increased significantly under HHP treatment (300-600 MPa), and the total carotenoids bioaccessibility was optimal at 600 MPa/1 min. The bioaccessibility of carotenoids in satsuma mandarin juice was positively correlated with the contents of titratable acids, total phenols and total sugars, all of which increased significantly after HHP.
View Article and Find Full Text PDFJ Sep Sci
September 2025
Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
Nifurtimox (NFX) is a chiral drug used for the treatment of Chagas Disease. Little attention has been paid to the enantioselective properties of chiral drugs used for neglected tropical diseases, highlighting the need for further studies in this area. In this work, the enantioselective properties of NFX were carefully investigated by HPLC using different chiral stationary phases (CSPs) and chromatographic modes.
View Article and Find Full Text PDFJ Neurochem
September 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.
View Article and Find Full Text PDFSmall
September 2025
Department of Materials Science, Key Laboratory of Automobile Materials, MOE and State Key Laboratory of High Pressure and Superhard Materials, International Center of Future Science, Jilin University, Changchun, 130012, China.
Molybdenum disulfide (MoS) exhibits excellent lubrication capacity rooted in its layered structure, but it suffers significant structural and functional deterioration due to oxidation in ambient environments, limiting its applications. Concerted efforts are focused on enhancing the antioxidation ability of MoS, but challenges remain. This work conceptualizes and demonstrates a contrarian design of MoS-based film via metal incorporation and oxidation based on consideration of key fundamental principles of thermodynamics, chemistry, and physical mechanics.
View Article and Find Full Text PDF