Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Optimizing phase-contrast micro-computed tomography (µCT) for a given object is not trivial if the radiation is polychromatic and the object multi-material. This study demonstrates how an optimal combination of propagation distance and mean energy (set by attenuation filters) may be derived for such an object (an electromotor scanned on beamline BM18 at ESRF in Grenoble, France). In addition to appropriate image quality metrics, it is mandatory to define a task. In that respect, raising E from 100 keV to 164 keV mitigates beam hardening by metal parts, yet raising E further to 230 keV deteriorates CNR (where CNR is contrast-to-noise ratio) due to higher image noise. Propagation distances between d = 2 m and 25.3 m are evaluated crosswise with energy. While longer propagation distances generally yield higher CNR, shorter distances appear favorable when discerning plastic near metal parts. SNR (where SNR is signal-to-noise ratio) power spectra and modulation transfer (MTF) are evaluated independently from two-dimensional projections supporting volume image analysis for which image sharpness depends strongly on the digital filters (Paganin and Wiener) which are applied along with filtered back-projection. In summary, optimizing synchrotron µCT scans remains a very complex task which differs from object to object. A physically accurate model of the complete imaging process may not only allow for optimization by simulation but also ideally improve CT image reconstruction in the near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067323 | PMC |
http://dx.doi.org/10.1107/S1600577525002814 | DOI Listing |