A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Innovative approaches to greywater micropollutant removal: AI-driven solutions and future outlook. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Greywater constitutes a significant portion of urban wastewater and is laden with numerous emerging contaminants that have the potential to adversely impact public health and the ecosystem. Understanding greywater's characteristics and measuring the contamination levels is crucial for designing an effective recycling system. However, wastewater treatment is an intricate process involving significant uncertainties, leading to variations in effluent quality, costs, and environmental risks. This review addresses the existing knowledge gap in utilising artificial intelligence (AI) to enhance the laundry greywater recycling process and elucidates the optimal treatment technologies for the most prevalent micropollutants, including microplastics, nutrients, surfactants, synthetic dyes, pharmaceuticals, and organic matter. The development of laundry greywater treatment technologies is also highlighted with a critical discussion of physicochemical, biological, and advanced oxidation processes (AOPs) based on their functions, methods, associated limitations, and future trends. Artificial neural networks (ANN) stand out as the most prevalent and extensively applied AI model in the domain of wastewater treatment. Utilising ANN models mitigates certain limitations inherent in traditional adsorption models, particularly by offering enhanced predictive accuracy under varied operating conditions and multicomponent adsorption systems. Moreover, tremendous success has been recorded with the random forest (RF) model, exhibiting 100% prediction accuracy for both sessile and effluent microbial communities within a bioreactor. The precise prediction or simulation of membrane fouling behaviours using AI techniques is also of paramount importance for understanding fouling mechanisms and formulating efficient strategies to mitigate membrane fouling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013613PMC
http://dx.doi.org/10.1039/d5ra00489fDOI Listing

Publication Analysis

Top Keywords

wastewater treatment
8
laundry greywater
8
treatment technologies
8
membrane fouling
8
innovative approaches
4
greywater
4
approaches greywater
4
greywater micropollutant
4
micropollutant removal
4
removal ai-driven
4

Similar Publications