Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study investigated the impact of blueberry anthocyanin (BA) on the interaction between tilapia myofibrillar protein (MP) and fishy compounds (hexanal, octanal, nonanal, trans-2-nonenal, and 1-octen-3-ol). Results indicated that at a protein concentration of 5 mg/mL and fishy compounds at 5 μg/mL, MP effectively adsorbed these compounds at 4 °C, pH 7.0, and 0.6 mol/L Na. Increasing BA concentration (0.03-0.24 mg/mL) enhanced the α-helix content of MP from 30 % to 60 %, with a blue shift in the maximum fluorescence emission peak (333-337 nm), suggesting that BA promotes protein structural folding and stability. In MP and fresh fish models, BA addition significantly decreased hexanal (from 50.2 % ± 1.6 % to 29.0 % ± 9.5 %), octanal (from 97.8 % ± 1.6 % to 38.7 % ± 1.8 %), and nonanal (from 69.4 % ± 7.7 % to 39.0 %). Conversely, higher BA concentrations led to increased release of 1-octene-3-ol (from 104.1 % ± 4.4 % to 120.4 % ± 1.1 %). Overall, the findings highlight the correlation between BA's effects on protein folding and stabilization and its influence on the controlled release of fishy compounds, underscoring the significance of polyphenols in protein-flavor interactions. This research offers valuable insights into flavor management and establishes a theoretical basis for flavor regulation in tilapia meat products, contributing to the broader study of quality control and flavor enhancement in meat products through natural pigment active ingredients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2025.116220 | DOI Listing |