A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Design and Implementation of a Soft-Rigid Hybrid Gripper with Bionic Ligaments and Joint Capsule. | LitMetric

Design and Implementation of a Soft-Rigid Hybrid Gripper with Bionic Ligaments and Joint Capsule.

Soft Robot

Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dealing with grasping tasks in unstructured environments, existing soft grippers often exhibit a lack of static stability, while rigid-soft hybrid grippers display limited compliance due to the fixed connections at the joints. To address the challenge of balancing static stability and flexible adaptability, this study designs and implements a bioinspired hybrid gripper combining soft and rigid elements. The gripper draws inspiration from the collateral ligaments and joint capsule structures of human fingers. It employs a tendon-driven mechanism that ensures high static stability while enabling a large range of flexion movements and some degree of deflection, mimicking the dynamic bending of a human finger. Experimental results demonstrate that the hybrid fingers excel in terms of static stability, working range, and output force. Notably, under conditions of extensor tendon pretension, the fingers exhibit finer motion toward the fingertips. The dual-finger gripper performs exceptionally well in various grasping tasks, stably grasping objects of different shapes and weights, such as the Evolved Grasp Analysis Dataset and common daily items. This study offers a novel and straightforward design approach for the development of bioinspired fingers and high-performance robots, holding broad application prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2024.0095DOI Listing

Publication Analysis

Top Keywords

static stability
16
hybrid gripper
8
ligaments joint
8
joint capsule
8
grasping tasks
8
design implementation
4
implementation soft-rigid
4
hybrid
4
soft-rigid hybrid
4
gripper
4

Similar Publications