Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established intervention for alleviating both motor and non-motor symptoms in advanced Parkinson's disease (PD). However, patient outcomes may vary widely, underscoring the need for predictive biomarkers. Neuroimaging techniques, such as neurite orientation dispersion and density imaging (NODDI), a biophysical model-based MRI technique, offer promise in forecasting clinical outcomes and supporting preoperative counseling. This prospective, open-label study aimed to identify microstructural markers that correlate with short-term motor outcomes following STN-DBS in PD patients. Thirty-five patients underwent diffusion MRI and comprehensive clinical evaluations preoperatively and six months postoperatively. Evaluations were performed in the ON-medication as well as ON-medication/ON-stimulation state. A whole-brain voxel-wise analysis was conducted to explore associations between microstructural metrics and motor outcomes. Permutation-based statistical methods were applied to adjust for multiple comparisons. Intact microstructure in the bilateral putamen, bilateral insula, and left pallidum was significantly associated with a greater postoperative motor symptom improvement. Additionally, preserved microstructure in the pre- and postcentral gyrus and right precuneus was associated with increased duration with good mobility and without troublesome dyskinesia, and reduced time with poor mobility. These findings suggest that diffusion MRI may serve as valuable tool for identifying patients likely to exhibit favorable motor outcomes following STN-DBS. Incorporating microstructural data into preoperative counseling could enhance patient selection and optimize therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012084PMC
http://dx.doi.org/10.1038/s41531-025-00930-3DOI Listing

Publication Analysis

Top Keywords

motor outcomes
16
deep brain
8
brain stimulation
8
parkinson's disease
8
preoperative counseling
8
outcomes stn-dbs
8
diffusion mri
8
motor
6
outcomes
6
microstructure associated
4

Similar Publications

Introduction: This study examined the impacts of different negative pressure cupping therapies (PCT) on pain relief, functional recovery, and inflammatory regulation in delayed onset muscle soreness (DOMS) after high-intensity exercise, with the aim of clarifying the dose-effect relationship.

Methods: In this study, 55 healthy male participants aged 18-25 were selected and divided into 5 groups: the control group (CTR;  = 11) and NPCT groups at different levels (-25 kPa, -35 kPa, -45 kPa, and -55 kPa;  = 11 in each group). A high-intensity protocol, which included 6 sets of lunges, squats, and squat jumps, was adopted to induce DOMS in the quadriceps femoris.

View Article and Find Full Text PDF

Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.

View Article and Find Full Text PDF

Objective: To examine the associations of LRRK2 p.G2019S, GBA1 p.N409S, polygenic risk scores (PRS), and APOE E4 on PD penetrance, risk, and symptoms.

View Article and Find Full Text PDF

Objective: To identify baseline factors linked to a positive response to intermittent theta-burst stimulation (iTBS) in individuals with stroke.

Design: Secondary analysis of a randomized controlled trial.

Setting: A single rehabilitation hospital.

View Article and Find Full Text PDF

Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.

View Article and Find Full Text PDF