98%
921
2 minutes
20
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established intervention for alleviating both motor and non-motor symptoms in advanced Parkinson's disease (PD). However, patient outcomes may vary widely, underscoring the need for predictive biomarkers. Neuroimaging techniques, such as neurite orientation dispersion and density imaging (NODDI), a biophysical model-based MRI technique, offer promise in forecasting clinical outcomes and supporting preoperative counseling. This prospective, open-label study aimed to identify microstructural markers that correlate with short-term motor outcomes following STN-DBS in PD patients. Thirty-five patients underwent diffusion MRI and comprehensive clinical evaluations preoperatively and six months postoperatively. Evaluations were performed in the ON-medication as well as ON-medication/ON-stimulation state. A whole-brain voxel-wise analysis was conducted to explore associations between microstructural metrics and motor outcomes. Permutation-based statistical methods were applied to adjust for multiple comparisons. Intact microstructure in the bilateral putamen, bilateral insula, and left pallidum was significantly associated with a greater postoperative motor symptom improvement. Additionally, preserved microstructure in the pre- and postcentral gyrus and right precuneus was associated with increased duration with good mobility and without troublesome dyskinesia, and reduced time with poor mobility. These findings suggest that diffusion MRI may serve as valuable tool for identifying patients likely to exhibit favorable motor outcomes following STN-DBS. Incorporating microstructural data into preoperative counseling could enhance patient selection and optimize therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12012084 | PMC |
http://dx.doi.org/10.1038/s41531-025-00930-3 | DOI Listing |
Front Sports Act Living
August 2025
School of Physical Education, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, China.
Introduction: This study examined the impacts of different negative pressure cupping therapies (PCT) on pain relief, functional recovery, and inflammatory regulation in delayed onset muscle soreness (DOMS) after high-intensity exercise, with the aim of clarifying the dose-effect relationship.
Methods: In this study, 55 healthy male participants aged 18-25 were selected and divided into 5 groups: the control group (CTR; = 11) and NPCT groups at different levels (-25 kPa, -35 kPa, -45 kPa, and -55 kPa; = 11 in each group). A high-intensity protocol, which included 6 sets of lunges, squats, and squat jumps, was adopted to induce DOMS in the quadriceps femoris.
NEJM AI
September 2025
Department of Bioengineering, Stanford University, Stanford, CA.
Background: Assessing human movement is essential for diagnosing and monitoring movement-related conditions like neuromuscular disorders. Timed function tests (TFTs) are among the most widespread types of assessments due to their speed and simplicity, but they cannot capture disease-specific movement patterns. Conversely, biomechanical analysis can produce sensitive disease-specific biomarkers, but it is traditionally confined to laboratory settings.
View Article and Find Full Text PDFAnn Clin Transl Neurol
September 2025
23andMe, Inc., Sunnyvale, California, USA.
Objective: To examine the associations of LRRK2 p.G2019S, GBA1 p.N409S, polygenic risk scores (PRS), and APOE E4 on PD penetrance, risk, and symptoms.
View Article and Find Full Text PDFArch Phys Med Rehabil
September 2025
Department of Rehabilitation Medicine, Wuxi Central Rehabilitation Hospital, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, China. Electronic address:
Objective: To identify baseline factors linked to a positive response to intermittent theta-burst stimulation (iTBS) in individuals with stroke.
Design: Secondary analysis of a randomized controlled trial.
Setting: A single rehabilitation hospital.
J Neural Eng
September 2025
Eindhoven University of Technology, De Rondom 70, Eindhoven, 5612 AP, NETHERLANDS.
Transcranial temporal interference stimulation (tTIS) has recently emerged as a non-invasive neuromodulation method aimed at reaching deeper brain regions than conventional techniques. However, many questions about its effects remain, requiring further experimental studies. This review consolidates the experimental literature on tTIS's effects in the human brain, clarifies existing evidence, identifies knowledge gaps, and proposes future research directions to evaluate its potential.
View Article and Find Full Text PDF