98%
921
2 minutes
20
Introduction: The main objective of this research is to identify potential leads for developing potent Keap1 inhibitors.
Methods: In the current research article, methods have been employed to discover potential Keap1 inhibitors. 3D-QSAR was generated using the ChemBL database of Keap1 inhibitors with IC. The best pharmacophore was selected for the screening of three different libraries namely Asinex, MiniMaybridge, and Zinc. The molecules screened from the databases were filtered through druggability rules and molecular docking studies. The best binding molecules obtained after docking studies were subjected to physicochemical properties toxicity determination by methods. The best hits were studied for stability in the cavity of Keap1 by molecular dynamic simulations.
Results: The virtual screening of different databases was carried out separately and three leads, were obtained. These lead molecules ASINEX 508, MiniMaybridgeHTS_01719, and ZINC 0000952883 showed the best binding in the Keap1 cavity. The molecular dynamic simulations of the binding complexes of the leads support the docking analysis. The leads (ASINEX 508, MiniMaybridgeHTS_01719, and ZINC 0000952883) were stabilized in the Keap1 binding cavity throughout 100 ns simulation, with average RMSD values of 0.100, 0.114, and 0.106 nm, respectively.
Conclusion: This research proposes three lead molecules as potential Keap1 inhibitors based on high throughput screening, docking, and MD simulation studies. These hit molecules can be used for further design and development of Keap1 inhibitors. This research provides the preliminary data for discovering novel Keap1 inhibitors. It opens new avenues for medicinal chemists to explore antioxidant-stimulating molecules targeting the Keap1-Nrf2 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008509 | PMC |
http://dx.doi.org/10.34172/bi.30335 | DOI Listing |
J Cardiovasc Pharmacol
September 2025
Department of Cardiovascular Medicine, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430060, China.
Nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role in myocardial remodeling. Omaveloxolone (Omav) acts as an activator of Nrf2 and plays a protective role by decreasing oxidative stress and inflammation. The purpose of this study was to explore the role of Omav in myocardial remodeling and investigate the potential mechanism involved.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, 518107 Shenzhen, Guangdong, China.
Background: Adenocarcinoma of Lung (LUAD) remains a leading cause of cancer-related deaths across the globe, and patients harboring epidermal growth factor receptor (EGFR) mutations frequently develop resistance to targeted therapies. While aurora kinase A (AURKA) has been implicated in tumorigenesis, its involvement in regulating ferroptosis via the kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 (NRF2)/heme oxygenase 1 (HO‑1) signaling axis in EGFR-mutant LUAD remains poorly understood.
Methods: We analyzed RNA-seq and clinical data from 594 LUAD samples from The Cancer Genome Atlas (TCGA) to explore associations between AURKA expression, EGFR mutation status, and immune cell infiltration.
Free Radic Biol Med
September 2025
Department of Cellular and Integrative Physiology, University of Nebraska Medical Center. Electronic address:
Background: Excessive oxidative stress is well known to participate in the pathogenesis of hypertension. A major regulator of oxidative stress is the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2). However, the role of Nrf2 in the pathogenesis of hypertension is not completely understood, especially at the endothelial cell level.
View Article and Find Full Text PDFChemMedChem
September 2025
Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
Nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) axis is an attractive therapeutic target for various intractable diseases. Although protein-protein interaction inhibitors against Keap1-Nrf2 have been developed over the past decade, more structural expansion is needed to improve efficacy. In this article, several candidate compounds are designed and synthesized as novel Nrf2 activators and their intracellular Nrf2-activating effects are evaluated.
View Article and Find Full Text PDFBr J Cancer
September 2025
Department of Biochemistry and Molecular Biology, Tohoku University, Tohoku Medical Megabank Organization, Sendai, Japan.
Background: The development and clinical success of KRAS inhibitors was a landmark achievement in anti-cancer drug development, as oncogenic KRAS had long been considered an intractable therapeutic target. Patients with KRAS mutant lung cancers frequently present with co-mutations in the KEAP1-NRF2 pathway, and because genetic activation of NRF2 results in resistance to all current anti-cancer therapies, we were motivated to explore how aberrant activation of NRF2 impacts the clinical response to KRAS inhibitors.
Methods: A broad range of techniques, including genetic knockouts, scRNA-seq and surface plasmon resonance, were used to determine the effect of KRAS drugs on NRF2.