A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Characterization of zebrafish rod and cone photoresponses. | LitMetric

Characterization of zebrafish rod and cone photoresponses.

Sci Rep

Department of Ophthalmology, Gavin Herbert Eye Institute-Center for Translational Vision Research, University of California, Irvine, Irvine, USA.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zebrafish is a popular species widely used in vision research. The zebrafish retina has one rod and four cone subtypes (UV-, blue-, green-, and red-sensitive) with 40%-rod 60%-cone ratio, making it suitable for comparable studies of rods and cones in health and disease. However, the basic photoresponse properties of the four zebrafish cone subtypes have not been described yet. Here, we established a method for collecting flash photoresponses from zebrafish rods and cones by recording membrane current with a suction electrode. Photoreceptor subtypes could be distinguished based on their characteristic morphology and spectral sensitivity. Rods showed 40-220-fold higher photosensitivity than cones. In the four cone subtypes, green-sensitive cones showed the highest sensitivity, 5.5-fold higher than that of red cones. Unexpectedly, rods produced smaller flash responses than cones despite their larger outer segments. Dim flash response analysis showed the quickest response kinetics in blue- and red-sensitive cones, with responses about 2-fold faster than the responses of UV- and green-sensitive cones, and 6.6-fold faster than the rod responses. We also obtained pharmacologically isolated photoreceptor voltage responses (a-wave) from isolated zebrafish retinas using ex vivo electroretinography (ERG). Dim flashes evoked rod-only responses, while bright flashes evoked two-component responses with a slow rod component and a fast cone component. Red- and green-sensitive cones were the dominant sources of the overall cone response. These studies provide a foundation for the use of zebrafish rods and cones to study the fundamental mechanisms that modulate the function of vertebrate photoreceptors in health and disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008237PMC
http://dx.doi.org/10.1038/s41598-025-96058-8DOI Listing

Publication Analysis

Top Keywords

cone subtypes
12
rods cones
12
green-sensitive cones
12
cones
10
rod cone
8
photoresponses zebrafish
8
health disease
8
zebrafish rods
8
flashes evoked
8
responses
7

Similar Publications