98%
921
2 minutes
20
Fermented dairy products are beneficial to cognitive health. Fermentation-released bioactive peptides have the potential to contribute to the neuroprotective effects of fermented dairy products. However, known neuroprotective peptides are mostly prepared by enzymatic hydrolysis, and physicochemical screening of food-derived functional peptides typically overlooks the interference of biotransport after ingestion. Thus, we aimed to identify neuroprotective peptides from casein fermented by Lactobacillus delbrueckii ssp. bulgaricus to provide more evidence supporting the contribution of fermentation-released peptides. We first screened bioaccessible peptides from fermented casein hydrolysate by simulating digestion, absorption, and blood-brain barrier penetration using INFOGEST standardized protocols, human colon Caco-2 cells, and human brain microvascular endothelial hCMEC/D3 cells sequentially. Next, we identified peptides of each stage by nano-liquid chromatography tandem MS. The intersections were considered bioaccessible peptides. We performed molecular docking against Kelch-like ECH-associated protein 1 (Keap1) to predict potential bioactive peptides and validated the predicted effects in BV2 microglial cells induced by LPS. As a result, we identified 1,971, 663, 276, and 208 casein peptides from the simulated products at each stage, and 63 bioaccessible peptides were identified during fermentation, underwent simulated digestion, and were transported via the simulated intestinal epithelial barrier and blood-brain barrier. Among these peptides, 7 nontoxic small peptides had relatively high predicted affinities for Keap1 and were verified in LPS-treated BV2 cells. We found that Phe-Val-Ala-Pro-Phe-Pro-Glu (FE7) decreased nitric oxide, IL-1β, reactive oxygen species, and lipid peroxidation levels by 69.6%, 103.6%, 119.3%, and 75.3%, respectively, in LPS-treated BV2 cells. In conclusion, FE7 could be a promising neuroprotective peptide in fermented casein hydrolysate by reducing neuroinflammation and oxidative stress. Our approach provides a feasible paradigm for identifying bioaccessible and neuroprotective peptides from dairy products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2024-25763 | DOI Listing |
Sci Adv
September 2025
Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
Acute sleep deprivation (SD) rapidly alleviates depression, addressing a critical gap in mood disorder treatment. Rapid eye movement SD (REM SD) modulates the excitability of vasoactive intestinal peptide (VIP) neurons, influencing the synaptic plasticity of pyramidal neurons. However, the precise mechanism remains undefined.
View Article and Find Full Text PDFJ Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFMetab Brain Dis
September 2025
Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.
Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Department of Neurology, Hubei Third People's Hospital of Jianghan University, Wuhan, China.
In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.
View Article and Find Full Text PDF