98%
921
2 minutes
20
PFASs are ubiquitous in various environmental and biological media due to their extensive application and stability. However, the sorption of PFASs, especially emerging PFASs, on different particle size fractions of marine sediments remains unknown. Here, we investigated the sorption kinetics, isotherms, and mechanisms of six legacy and emerging PFASs on five different particle size fractions of marine sediments (F1 (69.4-190 μm), F2 (63.3-163 μm), F3 (5.25-72.6 μm), F4 (3.29-34.7 μm), and F5 (1.69-22.7 μm)). Our results indicated that the sorption kinetics and isotherms conformed well to the pseudo-second-order model and the Freundlich model, respectively, suggesting the nonlinear sorption of PFASs on marine sediments. The sorption capacities of PFASs decreased significantly with increasing sediment particle size from F5 to F1. Meanwhile, PFAS distribution coefficients (K) correlated positively with organic carbon content, specific surface area, and sediment pore volume. K values of PFOA and PFOS were 0.40-0.65 and 2.64-6.12 times higher than those of their substitutes, GenX and 6:2 FTSA. Hydrophobic interactions dominated PFAS sorption over electrostatic interactions. Overall, this study offers a comprehensive understanding of legacy and emerging PFAS distribution and mechanisms in marine sediments of varying particle sizes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.121643 | DOI Listing |
Mar Environ Res
September 2025
School of Biology, College of Science, University of Tehran, 1417935840, Tehran, Iran. Electronic address:
This study aimed to compare the species and functional diversity of macrobenthic communities between natural and planted mangrove ecosystems. Samples were collected from two mangrove sites in the Gulf of Oman. Physicochemical properties of water and sediment characteristics were analyzed to assess their correlation with community structure.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou),
Hypothesis: Gas hydrate formation in sediments is influenced by the availability of gas-water interfacial areas, which governs gas-water interactions. The surface wettability of sediment particles is expected to affect the spatial distribution of water within the pore space, thereby altering the extent of gas-liquid contact. Consequently, by tuning the wettability heterogeneity of the sediment, the spatial distribution of pore water can be regulated, which in turn influences the gas-water interactions and the kinetics of gas hydrate formation.
View Article and Find Full Text PDFGeobiology
September 2025
Dipartimento di Scienze, Università di Roma Tre, Roma, Italy.
Large-scale geological processes shape microbial habitats and drive the evolution of life on Earth. During the Oligocene, convergence between Africa and Europe led to the opening of the Western Mediterranean Basin, a deep-ocean system characterized by fluid venting, oxygen depletion, and the absence of benthic fauna. In this extreme, inhospitable seafloor environment, fusiform objects known as Tubotomaculum formed, whose origin has long remained controversial.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Environment and Energy, Sejong University, Seoul 05006, South Korea. Electronic address:
Identifying the sources of sedimentary organic matter (OM) is essential for understanding pollution dynamics and guiding effective management in estuarine environments. This study proposes a novel and transferable source tracking framework that integrates Fourier transform infrared (FTIR) and fluorescence spectroscopy with a principal component analysis-absolute principal component score-multiple linear regression (PCA-APCS-MLR) receptor model to apportion OM sources in surface sediments across four South Korean estuaries with contrasting land use. Five new infrared-based indices (IRIs), developed from diagnostic FTIR absorbance features of water-extractable organic matter (WEOM), were designed to capture source-specific functional group compositions linked to terrestrial, synthetic, and petroleum-derived OM.
View Article and Find Full Text PDFInt J Radiat Biol
September 2025
Department of Geography, Nara Women's University, Nara, Japan.
Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.
View Article and Find Full Text PDF