Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Intuitive design strategies, primarily based on literature research and trial-and-error efforts, have significantly contributed to advancements in the electrocatalyst field. However, the inherently time-consuming and inconsistent nature of these methods presents substantial challenges in accelerating the discovery of high-performance electrocatalysts. To this end, guided design approaches, including in-situ experimental techniques and data mining, have emerged as powerful catalyst design and optimization tools. The former offers valuable insights into the reaction mechanisms, while the latter identifies patterns within large catalyst databases. In this review, we first present the examples using in-situ experimental techniques, emphasizing a detailed analysis of their strengths and limitations. Then, we explore advancements in data-mining-driven catalyst development, highlighting how data-driven approaches complement experimental methods to accelerate the discovery and optimization of high-performance catalysts. Finally, we discuss the current challenges and possible solutions for guided catalyst design. This review aims to provide a comprehensive understanding of current methodologies and inspire future innovations in electrocatalytic research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008106 | PMC |
http://dx.doi.org/10.1186/s40580-025-00484-3 | DOI Listing |