A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Feasibility of U-Net model for cerebral arteries segmentation with low-dose computed tomography angiographic images with pre-processing methods. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Subtraction computed tomography angiography (sCTA) can effectively separate enhanced cerebral arteries from similar signal intensity and proximity (i.e., vertebrae and skull). However, sCTA is not considered mainstream because of the high radiation dose generated by the two-scan protocol. We aimed to solve the overexposure problem by training a U-Net-based CA segmentation model using a low-dose computed tomographic angiography (CTA) image-based dataset with various pre-processing methods to achieve a performance similar to that of sCTA. We optimized a non-local means (NLM) algorithm using the coefficient of variation and contrast-to-noise ratio. In addition, datasets were constructed by predicting the CA mask using a semiautomatic thresholding technique based on region growing method. Then, CTA images of 35 (2052 slices), 4 (248 slices), and 5 patients (594 slices) were used, respectively, for the train, validation, and test sets. To evaluate the performance of the U-Net-based CA segmentation model quantitatively according to the constructed dataset, the average precision (AP), intersection over union (IoU), and F1-score were calculated. For the dataset to which both the optimized NLM algorithm and semiautomatic thresholding technique were applied, the segmentation model showed the most improved performance. In particular, the quantitative evaluation of the low-dose CTA image with the NLM algorithm and the semiautomatic thresholding-based U-Net model calculated AP, IoU, and F1-scores of approximately 0.880, 0.955, and 0.809, respectively, which were most similar to the CA segmentation performance of the sCTA technique. The proposed U-Net model provided CA segmentation results without additional radiation exposure. In addition, the selection and optimization of an appropriate pre-processing methods were identified as essential for achieving higher segmentation performance for the U-Net model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006485PMC
http://dx.doi.org/10.1038/s41598-025-98098-6DOI Listing

Publication Analysis

Top Keywords

u-net model
16
pre-processing methods
12
segmentation model
12
nlm algorithm
12
cerebral arteries
8
low-dose computed
8
computed tomography
8
u-net-based segmentation
8
performance scta
8
semiautomatic thresholding
8

Similar Publications