Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microwave fabrication of aluminium composites has emerged as a novel and trending technique in the current industrial landscape due to its efficiency and energy-saving potential. In this study, Al-kaolin composites were fabricated using microwave energy techniques, focusing on predictive modelling of the microwave-assisted Al-kaolin composite's wear rate and coefficient of friction (COF). The fabricated composites were evaluated for hardness, wear rate, and coefficient of friction (COF) under varying parameters. It was observed that 4 wt% kaolin is the optimal reinforcement fraction, resulting in a 34% improvement in tensile strength, while hardness showed a consistent increase up to 4 wt% Kaolin, reaching a maximum value of 96 RHC. Additionally, wear rate and COF exhibited a decreasing trend with increasing kaolin content, indicating enhanced tribological performance. The lowest wear rate of 3.2 × 10⁻ mm/Nm and COF of 0.42 were observed for the 4 wt% Kaolin composite, demonstrating improved wear resistance. To further understand and predict the behaviour of the composites, a systematic dataset was collected, and various machine learning (ML) models were trained and tested for predictive modelling of wear rate and COF. Among the trained models, XGBoost demonstrated the highest predictive accuracy, achieving 94.33% for wear rate and 94.62% for COF. A feature importance analysis revealed that the standard of distance (Sod) was the most influential parameter affecting these outputs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006395PMC
http://dx.doi.org/10.1038/s41598-025-97782-xDOI Listing

Publication Analysis

Top Keywords

wear rate
24
4 wt% kaolin
12
machine learning
8
predictive modelling
8
rate coefficient
8
coefficient friction
8
friction cof
8
observed 4 wt%
8
rate cof
8
wear
7

Similar Publications

Electrochemical grooving of tube inner walls with emphasis on feed strategy and multi-pass effects on material removal and groove geometry.

PLoS One

September 2025

Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Samsun University, Samsun, Turkiye.

Electrochemical (EC) grooving minimises tool wear and residual stress when machining hard-to-cut tube materials. This study examines how the number of passes and tool feed direction affect material removal rate (MRR) and removed area (RA) in Stellite 21 tubes. Two feed strategies were tested: Unidirectional Electrolyte Flow (UEF), where the tool moves entirely opposite to the electrolyte flow; and Hybrid Electrolyte Flow (HEF), where the tool first moves against and then with the flow direction.

View Article and Find Full Text PDF

The increasing concern over environmental pollution from brake dust and the adverse impacts of conventional brake pad materials, such as metallic, semi-metallic, and ceramic composites, has prompted the exploration of more sustainable alternatives. Traditional brake pads release harmful non-exhaust emissions that contribute to air pollution and wear down quickly, posing both environmental and operational challenges. This study investigates the development and performance evaluation of polymer friction composites enhanced with natural friction modifiers sourced from agricultural waste materials like walnut shell, coconut shell, and groundnut shell powders.

View Article and Find Full Text PDF

The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.

View Article and Find Full Text PDF

Durable Near-Zero Wear Behavior Achieved by Polymer-Based Protic Ionic Liquids on Engineering Steel Surfaces.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Near-zero wear on engineering steel surfaces is a promising solution to extend the service life of mechanical equipment. However, most existing strategies offer only limited low wear under particular conditions and friction pairs. To address this, we design a polymer-based proton ionic liquid (PPILs) lubricant, leveraging the proton exchange between polyethylenimine, which is rich in active nitrogen groups, and bis(2-ethylhexyl) phosphate.

View Article and Find Full Text PDF

Introduction: Identifying anxiety disorders in autistic youth can be challenging due to the unique presentation of anxiety symptoms in autistic youth and the difficulties youth may have reporting on their own anxiety symptoms. These challenges underscore the need for objective and reliable measures. Understanding whether autonomic activity is associated with the presence of anxiety may lead to its use as an objective anxiety assessment tool in individuals who may otherwise struggle to communicate their feelings of anxiety.

View Article and Find Full Text PDF