A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Engineering Magnetotactic Bacteria as Medical Microrobots. | LitMetric

Engineering Magnetotactic Bacteria as Medical Microrobots.

Adv Mater

Department of Biomedical Engineering, and Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nature's ability to create complex and functionalized organisms has long inspired engineers and scientists to develop increasingly advanced machines. Magnetotactic bacteria (MTB), a group of Gram-negative prokaryotes that biomineralize iron and thrive in aquatic environments, have garnered significant attention from the bioengineering community. These bacteria possess chains of magnetic nanocrystals known as magnetosomes, which allow them to align with Earth's geomagnetic field and navigate through aquatic environments via magnetotaxis, enabling localization to areas rich in nutrients and optimal oxygen concentration. Their built-in magnetic components, along with their intrinsic and/or modified biological functions, make them one of the most promising platforms for future medical microrobots. Leveraging an externally applied magnetic field, the motion of MTBs can be precisely controlled, rendering them suitable for use as a new type of biohybrid microrobotics with great promise in medicine for bioimaging, drug delivery, cancer therapy, antimicrobial treatment, and detoxification. This mini-review provides an up-to-date overview of recent advancements in MTB microrobots, delineates the interaction between MTB microrobots and magnetic fields, elucidates propulsion mechanisms and motion control, and reports state-of-the-art strategies for modifying and functionalizing MTB for medical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12243727PMC
http://dx.doi.org/10.1002/adma.202416966DOI Listing

Publication Analysis

Top Keywords

magnetotactic bacteria
8
medical microrobots
8
aquatic environments
8
mtb microrobots
8
engineering magnetotactic
4
bacteria medical
4
microrobots
4
microrobots nature's
4
nature's ability
4
ability create
4

Similar Publications