98%
921
2 minutes
20
Small interfering RNA (siRNA) therapeutics provide a targeted approach to silence disease-related genes, with notable success in liver-targeting applications. However, the quantitative effects of siRNA properties, such as stability and affinity, as well as biological factors like cell proliferation, mRNA turnover, and abundance, on gene silencing, particularly for extrahepatic targets, remain poorly understood. To identify determinants influencing gene knockdown extent and duration, we developed a mechanistic intracellular pharmacokinetic/pharmacodynamic (PK/PD) model for RNAiMAX-delivered siRNA, based on cytoplasmic siRNA disposition, RISC-loaded siRNA exposure, and mRNA knockdown across different targets in MCF7 and BT474 cells. The model highlighted the critical roles of cell proliferation in silencing duration and mRNA turnover rates on knockdown extent. In rapid-dividing cells, mRNA half-life drives knockdown profiles, whereas chemical siRNA stabilization extends silencing in slow-dividing cells. Targets with extremely low or high mRNA abundance pose silencing challenges. While sufficient RISC occupancy is essential, increasing RISC exposure has minimal impact on silencing extent; enhancing siRNA-mRNA target engagement is more effective. The model also defined a quantitative relationship for maximal mRNA knockdown, governed by cell proliferation, mRNA half-life, and RISC-mediated cleavage rates. This mechanistic PK/PD modeling provides insights into optimizing siRNA design and target selection in therapeutic development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12002994 | PMC |
http://dx.doi.org/10.1016/j.omtn.2025.102516 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFCalcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFCancer Metastasis Rev
September 2025
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.
Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDFCell Death Dis
September 2025
Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.
View Article and Find Full Text PDF