Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Among the emerging issues in probiotic safety, the possible presence of pks, a gene cluster synthetizing a genotoxin known as colibactin, is one of the most alarming. Indeed, indigenous E. coli strain pks-positive are found in 60% of patients with colorectal cancer, and the most widely used E. coli-based probiotic, known as E. coli Nissle 1917 (DSM 6601), is pks-positive. Starting from 25 potential candidates selected by screening 25 infant stool samples, we have selected an E. coli strain (named 5C, deposited as LMG S-33222) belonging to the phylotype A and having the serovar O173:H1. Having been previously completely sequenced by our group, we have further characterized this strain, demonstrating that it is (i) devoid of the most known potential pathogenic-related genes, (ii) devoid of possible plasmids, (iii) antibiotic-sensitive according to the EFSA panel, (iv) resistant in gastric and enteric juice, (v) significantly producing acetate, (vi) poorly producing histamine, (vii) endowed with a significant in vitro antipathogenic profile, (viii) promoting a significant in vitro immunological response based on IL-10 and IL-12, and (ix) devoid of the pks genes. A comparative genomics versus E. coli Nissle 1917 is also provided. Considering that the other two most commonly used E. coli-based probiotics (E. coli DSM 17252 and E. coli A0 34/86) are respectively pks-positive and alpha-hemolysin-(hly) and cytotoxic necrotizing factor-1-(cnf1) positive, this novel strain (E. coli 5C) is likely the probiotic E. coli strain with the best safety profile available to date for human use.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-025-10522-5DOI Listing

Publication Analysis

Top Keywords

coli strain
12
coli
9
comparative genomics
8
probiotic coli
8
coli nissle
8
nissle 1917
8
strain
6
selection comparative
4
genomics potential
4
probiotic
4

Similar Publications

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

Escherichia coli strain O55 contains two cryptic plasmids that depend on each other to replicate.

Arch Microbiol

September 2025

División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.

Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.

View Article and Find Full Text PDF

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

High-Level Soluble Expression of Recombinant Human Bone Morphogenetic Protein-2 in .

ACS Synth Biol

September 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China.

Human Bone Morphogenetic Protein-2 (hBMP-2) serves as a critical regulator in bone and cartilage formation; however, its industrial application is hindered by its inherent tendency to form inclusion bodies in prokaryotic expression systems. To address this issue, we established a recombinant hBMP-2 (rhBMP-2) expression system using the pCold II plasmid and the SHuffle T7 strain. We explored several strategies to enhance the solubility of rhBMP-2, including coexpression with molecular chaperones, vesicle-mediated secretory expression, fusion expression with synthetic intrinsically disordered proteins (SynIDPs), and fusion expression with small-molecule peptide tags.

View Article and Find Full Text PDF

Aspects of Genetic Diversity, Host Specificity and Public Health Significance of Single-Celled Intestinal Parasites Commonly Observed in Humans and Mostly Referred to as 'Non-Pathogenic'.

APMIS

September 2025

Laboratory of Parasitology, Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark.

Clinical microbiology involves the detection and differentiation of primarily bacteria, viruses, parasites and fungi in patients with infections. Billions of people may be colonised by one or more species of common luminal intestinal parasitic protists (CLIPPs) that are often detected in clinical microbiology laboratories; still, our knowledge on these organisms' impact on global health is very limited. The genera Blastocystis, Dientamoeba, Entamoeba, Endolimax and Iodamoeba comprise CLIPPs species, the life cycles of which, as opposed to single-celled pathogenic intestinal parasites (e.

View Article and Find Full Text PDF