A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Exploring the Impact of Polysaccharide-Based Nanoemulsions in Drug Delivery. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoemulsions are tiny mixtures of water and oil stabilized by surfactants, and they have become increasingly popular across various industries, including medicine. With droplet sizes in the nanometer scale, these mixtures are both compact and effective. This discussion explores the potential of polysaccharide-based nanotechnology as an innovative approach to drug delivery. Nanoemulsions offer several benefits, such as enhanced drug solubility and bioavailability, which are crucial for drugs that poorly dissolve in water. The incorporation of natural polysaccharides as emulsifiers in these nanoemulsions ensures their biocompatibility and safety within the body. Additionally, nanoemulsions can facilitate a sustained release of medications, allowing for gradual drug release over an extended period. This controlled release can be achieved through the careful selection and formulation of polysaccharides. This review addresses the methods for producing polysaccharide-based nanoemulsions and examines their physical and chemical properties. It highlights the influence of polysaccharide molecular weight and structure on the stability of nanoemulsions and the effectiveness of drug encapsulation. By understanding these factors, researchers can develop more efficient and safe drug delivery systems utilizing nanoemulsions. Additionally, the present article provides explicit and thorough information about the use of NPLS-based nano-carriers encapsulating a number of drugs designed to treat a variety of conditions, such as diabetes, cancer, HIV, malaria, cardiovascular and respiratory diseases, and skin diseases. For this reason, it is very important to review the most recent developments in polysaccharide-based nano-biocarriers in drug delivery and their application in the treatment of diseases. In this work, we concentrated on the preparation of polysaccharide-based nano-biocarriers, commonly used polysaccharides for the preparation of nano-biocarriers, and drugs loaded on polysaccharide-based nano-biocarriers to treat diseases. In the near future, polysaccharide-based nano-biocarriers will be used more and more frequently in drug delivery and disease treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.35582DOI Listing

Publication Analysis

Top Keywords

drug delivery
20
polysaccharide-based nano-biocarriers
16
nanoemulsions
8
polysaccharide-based nanoemulsions
8
drug
8
delivery nanoemulsions
8
polysaccharide-based
7
delivery
5
nano-biocarriers
5
exploring impact
4

Similar Publications