98%
921
2 minutes
20
Purpose: APX3330 is an oral agent targeting the redox signaling activity of Ape1/Ref-1 (Ref-1), a key regulator of transcription factors involved in inflammation and tumorigenesis. APX3330 selectively inhibits Ref-1's redox function without affecting its DNA repair role. This Phase 1, multicenter, open-label, dose-escalation study in advanced solid tumor was aimed at determining the recommended Phase 2 dose (RP2D) while assessing safety, pharmacokinetics, and biomarker evidence of target engagement. Clinical trial: NCT03375086 .
Patients And Methods: Nineteen cancer patients were treated, with eight completing follow-up. Subjects received APX3330 orally twice daily in 21-day cycles, starting at 240 mg/day and escalating in 120 mg/day increments. Adverse event (AE) monitoring followed a 1 pt/cohort approach until a >G2 toxicity event, after which a 3+3 design was implemented. Treatment continued until disease progression, consent withdrawal, or intolerable toxicity. Antitumor activity was assessed using RECIST 1.1, and pharmacodynamic markers included serum Ref-1 levels and circulating tumor cells.
Results: Six subjects had stable disease for >4 cycles, with four remaining on study for 252- 421 days. No treatment-related serious adverse events occurred. One subject (720 mg cohort) withdrew due to Grade 3 maculopapular rash (dose-limiting toxicity). Laboratory assessments and ECGs showed no clinically significant abnormalities.
Conclusions: APX3330 demonstrated clinical benefit by stabilizing disease in ∼33% of subjects. Ref-1 target engagement was confirmed via biomarker analyses, with reduced serum Ref-1 and circulating tumor cells. The RP2D is 600 mg daily, with APX3330 showing a favorable safety profile and target-mediated effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998840 | PMC |
http://dx.doi.org/10.1101/2025.04.03.25325173 | DOI Listing |
Front Neurosci
July 2025
Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
Background: Pain is a multifaceted condition intricately linked to inflammation, which plays a critical role in its onset and progression.
Methods: To investigate the influence of APE1/Ref-1 on oxidative stress and inflammatory marker expression, we employed a hind paw sensitization model induced by formalin. We inhibited the redox function of APE1 using E3330 and assessed its effects on pain behavior.
Physiol Rep
August 2025
Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.
Chronic inflammation and oxidative stress exacerbate muscle wasting and weakness in Duchenne muscular dystrophy (DMD). Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) regulates transcription factors involved in inflammatory and oxidative stress pathways. APE1/Ref-1 is an emerging therapeutic target in inflammatory conditions.
View Article and Find Full Text PDFRedox Biol
June 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; In
Ischemic retinopathies, including proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP), are characterized by abnormal retinal neovascularization and can lead to blindness in children and adults. Current treatments, such as intravitreal anti-VEGF injections, face limitations due to high treatment burden and variable efficacy, as multiple signaling pathways, beyond VEGF, contribute to retinal neovascularization. Previous studies demonstrate that targeting the redox-mediated transcriptional regulatory function of APE1/Ref-1 reduces pathological neovascularization.
View Article and Find Full Text PDFPurpose: APX3330 is an oral agent targeting the redox signaling activity of Ape1/Ref-1 (Ref-1), a key regulator of transcription factors involved in inflammation and tumorigenesis. APX3330 selectively inhibits Ref-1's redox function without affecting its DNA repair role. This Phase 1, multicenter, open-label, dose-escalation study in advanced solid tumor was aimed at determining the recommended Phase 2 dose (RP2D) while assessing safety, pharmacokinetics, and biomarker evidence of target engagement.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
May 2025
Department of Physiology, College of Medicine, Chungnam National University, Daejeon 35015, Korea.
The role of acetylated apurinic/apyrimidinic endonuclease 1/redox factor 1 (APE1/Ref-1) in ovarian cancer remains poorly understood. Therefore, this study aimed to investigate the combined effect of recombinant human APE1/Ref-1 (rhAPE1/Ref-1) and aspirin (ASA) on two ovarian cancer cells, PEO-14, and CAOV3. The viability and apoptosis of ovarian cancer cells treated with rhAPE1/Ref-1 or ASA were assessed.
View Article and Find Full Text PDF