98%
921
2 minutes
20
The continuous demand for high-performance protective and functional coatings in industrial structures and smart devices necessitates the development of advanced materials with enhanced properties. Polysilazanes, polymers composed of alternating silicon and nitrogen atoms, have emerged as versatile candidates in this realm. Their applications span a wide range of industries, including high-performance coatings, ceramic synthesis, composites, thermally resistant coatings, packaging materials, solar cells, and electromagnetic devices. This review presents a comprehensive analysis of the latest scientific and technological advancements in polysilazane-based coatings, focusing on the diverse applications and underlying mechanisms. Through systematic examination, the review explores various modifications to polysilazane structures and substrates to achieve desired properties, including the integration of functionalized chemicals and nanoparticles. The paper also outlines potential future research directions to further harness the capabilities of polysilazanes in advanced material science.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cis.2025.103508 | DOI Listing |
Adv Colloid Interface Sci
August 2025
Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 247001, India. Electronic address:
The continuous demand for high-performance protective and functional coatings in industrial structures and smart devices necessitates the development of advanced materials with enhanced properties. Polysilazanes, polymers composed of alternating silicon and nitrogen atoms, have emerged as versatile candidates in this realm. Their applications span a wide range of industries, including high-performance coatings, ceramic synthesis, composites, thermally resistant coatings, packaging materials, solar cells, and electromagnetic devices.
View Article and Find Full Text PDF