Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optimization of heat and mass transfer via higher thermally conductive generalized nonlinear materials namely, the Cross fluid is one of the major contributions of this work. This particular work is further analyzed effectively in the presence of linear reactions as well as solar radiation. The flow configuration is assumed with anticlockwise rotation which guarantees more heat transfer as compared to the linear or translator motion of such materials. Specifically, the generalized concept of Brownian motion as well as thermophoretic forces are utilized in the swirling motion of shear rate-dependent viscosity material which plays a significant role in science and industries. However, an enhancement in the conduction is caused by the non-uniform nanoparticle concentration and this is due to the involvement of the thermo diffusion phenomenon. Moreover, the probability of an extra degree of freedom to the heat equation is reduced by the introduction of the radiation which alternately provided a significant contribution to the thermal conductivity maximization. Additionally, the appearance of linear reaction in the concentration equation is a foundation that is based on the first-order apparent kinetics is one of the hydrolysis of the anticancer cisplatin drugs. Mathematical equations are developed and then solved by using one of the modified collocation methods. The time relaxation constant reduced the pressure and enhanced the rotational flow speed. The reduction in pedesis and radiation caused enhancement in the pressure and temperature. As the first-order reaction rate increases, the material concentration decreases, while radiation enhances the heat transfer rate. The Schmidt number effectively reduces the mass flow rate, whereas the reaction rate enhances it. The entire scheme is validated by providing a well-matched comparison.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993691PMC
http://dx.doi.org/10.1038/s41598-025-95835-9DOI Listing

Publication Analysis

Top Keywords

higher thermally
8
thermally conductive
8
heat transfer
8
reaction rate
8
numerical analysis
4
analysis electrochemically
4
electrochemically radiative
4
radiative higher
4
conductive nanomaterials
4
nanomaterials spinning
4

Similar Publications

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Decades of antibiotic misuse have spurred an antimicrobial resistance crisis, creating an urgent demand for alternative treatment options. Although phototherapy has therapeutic potential, the efficacy of the most advanced photosensitizers (PS) is essentially limited by aggregation-induced quenching, which significantly reduces their therapeutic effect. To address these challenges, we developed a cationic metallocovalent organic framework (CRuP-COF) via a solvent-mediated dual-reaction synthesis strategy.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.

View Article and Find Full Text PDF

Incubation temperature affects both growth and energy metabolism in birds after hatching. Changes in cellular mechanisms, including mitochondrial function, are a likely but unexplored explanation for these effects. To test whether temperature-dependent changes to mitochondria may link embryonic development to the post-natal phenotype, we incubated Japanese quail eggs at constant low (36.

View Article and Find Full Text PDF

Getting caregivers to respond to their pain cries is vital for the human baby. Previous studies have shown that certain features of baby cries-the nonlinear phenomena (NLP)-enable caregivers to assess the pain felt by the baby. However, the extent to which these NLP mobilize the autonomic nervous system of an adult listener remains unexplored.

View Article and Find Full Text PDF