Biodiversity Dynamics in a Ramsar Wetland: Assessing How Climate and Hydrology Shape the Distribution of Dominant Native and Alien Macrophytes.

Plants (Basel)

Instituto de Ciencias de la Tierra, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Coastal wetlands provide critical ecological services but are threatened by the human, climatic, and hydrological changes impacting these ecosystems. Several key ecosystem services and functions rely on aquatic macrophyte plant species. We integrate 10 years of seasonal monitoring data (2014-2024) and climatic and hydrological datasets to assess how environmental variability influences two dominant aquatic macrophytes-the invasive and non-indigenous Planch. Casp. (Hydrocharitaceae) and the native (C.A.Mey.) Soják-in Chile's first Ramsar site, Carlos Anwandter, and a Nature Sanctuary. We modeled suitable habitat areas using MaxEnt software with Landsat 8 spectral bands and indices as predictive layers. We found significant recent decreases in temperature, river flow, and water level, with a nonsignificant shift in precipitation. We also observed marked spatial and temporal fluctuations in areas with suitable habitat areas for both macrophytes. Stepwise regression analyses indicated that expanded with increasing temperature over time but declined with water level variability. showed contrasting effects, declining with rising temperature and water levels but expanding with higher precipitation. These findings emphasize the complexity of coastal wetland ecosystems under environmental stress and climate change and the need for further research for the conservation and management of coastal wetlands along migratory flyways such as the Southeastern Pacific Flyway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991433PMC
http://dx.doi.org/10.3390/plants14071116DOI Listing

Publication Analysis

Top Keywords

coastal wetlands
8
climatic hydrological
8
suitable habitat
8
habitat areas
8
water level
8
biodiversity dynamics
4
dynamics ramsar
4
ramsar wetland
4
wetland assessing
4
assessing climate
4

Similar Publications

Making Restoration Effective for Dynamic Coastal Wetlands.

Glob Chang Biol

September 2025

Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.

View Article and Find Full Text PDF

The impacts of polypropylene microplastics on carbon and nitrogen cycling in coastal wetlands: Field evidence.

J Hazard Mater

September 2025

School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210023

Coastal wetlands are hotspots for carbon and nitrogen cycling and serve as sinks for microplastics (MPs). Although MP effects on these biogeochemical cycles have been investigated under laboratory experiments, field-based evidence is lacking. This study presents the first field investigation of MP impacts, specifically polypropylene (PP), on sediment carbon and nitrogen cycling in intertidal and supratidal zones of a coastal wetland, employing in-situ culture over three months.

View Article and Find Full Text PDF

Population Dynamics of the Florida Softshell Turtle () in a Protected Spring Ecosystem.

Biology (Basel)

August 2025

Turtle Survival Alliance, 5900 Core Road, Suite 504, North Charleston, SC 29406, USA.

The Florida softshell turtle, , is considered common and found in many different types of freshwater habitats throughout its range. However, despite its prevalence where it occurs, little is understood about the species' life history and population dynamics due to difficulties with capture and long-term marking. Building on a foundational study of the Florida softshell turtle at Wekiwa Springs State Park (WSSP) from 2007 to 2012, we present findings from an extended 16-year mark-recapture study spanning from 2007 to 2023.

View Article and Find Full Text PDF

Due to human activities and the invasion of , the population of () in the Yangtze River Estuary has gradually declined. To address this issue, numerous restoration efforts have been undertaken. To investigate the changes and influencing factors of soil bacterial communities during the restoration of wetlands, we selected populations as the research focus and divided the samples into two years, S1 and S2.

View Article and Find Full Text PDF

Genome-Wide Identification and Co-Expression Analysis of WRKY Genes Unveil Their Role in Regulating Anthocyanin Accumulation During Fruit Maturation.

Biology (Basel)

July 2025

Basic Forestry and Proteomics Research Center, School of Future Technology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Anthocyanins, crucial water-soluble pigments in plants, determine coloration in floral and fruit tissues, while fulfilling essential physiological roles in terms of plant growth, development, and stress adaptation. The biosynthesis of anthocyanins is transcriptionally regulated by WRKY factors, one of the largest plant-specific transcription factor families. is an East Asian species, prized for its exceptionally persistent butterfly-shaped fruits that undergo pericarp dehiscence, overturning, and a color transition to scarlet red.

View Article and Find Full Text PDF