A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Real-World Colonoscopy Video Integration to Improve Artificial Intelligence Polyp Detection Performance and Reduce Manual Annotation Labor. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

: Artificial intelligence (AI) integration in colon polyp detection often exhibits high sensitivity but notably low specificity in real-world settings, primarily due to reliance on publicly available datasets alone. To address this limitation, we proposed a semi-automatic annotation method using real colonoscopy videos to enhance AI model performance and reduce manual labeling labor. : An integrated AI model was trained and validated on 86,258 training images and 17,616 validation images. Model 1 utilized only publicly available datasets, while Model 2 additionally incorporated images obtained from real colonoscopy videos of patients through a semi-automatic annotation process, significantly reducing the labeling burden on expert endoscopists. : The integrated AI model (Model 2) significantly outperformed the public-dataset-only model (Model 1). At epoch 35, Model 2 achieved a sensitivity of 90.6%, a specificity of 96.0%, an overall accuracy of 94.5%, and an F1 score of 89.9%. All polyps in the test videos were successfully detected, demonstrating considerable enhancement in detection performance compared to the public-dataset-only model. : Integrating real-world colonoscopy video data using semi-automatic annotation markedly improved diagnostic accuracy while potentially reducing the need for extensive manual annotation typically performed by expert endoscopists. However, the findings need validation through multicenter external datasets to ensure generalizability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11988911PMC
http://dx.doi.org/10.3390/diagnostics15070901DOI Listing

Publication Analysis

Top Keywords

semi-automatic annotation
12
model
10
real-world colonoscopy
8
colonoscopy video
8
artificial intelligence
8
polyp detection
8
detection performance
8
performance reduce
8
reduce manual
8
manual annotation
8

Similar Publications