Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Motor learning can occur through active reaching with the arm hidden from view, leading to improvements in somatosensory acuity and modulation of functional connectivity in sensorimotor and reward networks. In this proof-of-principle study, we assess if the same paradigm benefits stroke survivors using a compact end-effector robot with integrated gaming elements. Nine community-dwelling chronic hemiplegic stroke survivors with persistent somatosensory deficits participated in 15 training sessions, each lasting 1 h. Every session comprised a robotic-based joint approximation block, followed by 240 repetitions of training using a forward-reaching task with the affected forearm covered from view. During movement, the robot provided haptic guidance along the movement path as enhanced sensory cues. Augmented reward feedback was given following every successful movement as positive reinforcement. Baseline, post-intervention, and 1-month follow-up assessments were conducted, with the latter two sessions occurring after the final training day. Training led to reliable improvements in endpoint accuracy, faster completion times, and smoother movements. Acceptability and feasibility analyses were performed to understand the viability of the intervention. Significant improvement was observed mainly in robotic-based sensory outcomes up to a month post training, suggesting that training effects were predominantly sensory, rather than motor. The study outcomes provide preliminary evidence supporting the feasibility of this intervention for future adoption in neurorehabilitation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11989307 | PMC |
http://dx.doi.org/10.3390/jcm14072189 | DOI Listing |