98%
921
2 minutes
20
Tilapia piscidin 4 (TP4) is an amphiphilic cationic antimicrobial peptide derived from Nile tilapia (Oreochromis niloticus), known for its broad-spectrum antimicrobial activity, potent anti-tumor effects, and immunomodulatory property. However, its significant toxicity and poor stability pose major challenges for practical applications. In this study, the TP4 sequence was modified by deleting nine amino acids from the N-terminal region and substituting glycine at the 13th position with cysteine, resulting in a modified peptide designated TP4-16G4C (FSACKAIHRLIRRRRR). The dimer of TP4-16G4C (bis-TP4-16G4C) was obtained by facilitating the formation of disulfide bonds through the oxidation of cysteine. Subsequently, their antibacterial activity, cytotoxicity, stability, and underlying mechanisms were investigated. TP4-16G4C and its dimer exhibited excellent antibacterial activity against a range of fish pathogens, particularly the dimer in vivo. Further study indicated that bis-TP4-16G4C exhibited significantly reduced toxicity toward fish red blood cells and other cell lines, alongside improved stability against proteases and serum, compared to the parental peptide TP4. Mechanistically, bis-TP4-16G4C disrupted the integrity of the bacterial membrane, leading to the leakage of cellular contents; additionally, it interacted with lipopolysaccharides, bound to bacterial genomic DNA, and effectively inhibited bacterial biofilm formation, similar to the action of TP4. In summary, the modified and dimerized antimicrobial peptide bis-TP4-16G4C exhibits reduced toxicity, enhanced stability, and superior antimicrobial activity in vivo, suggesting its greater suitability for practical applications in aquaculture and other fields compared to its parental peptide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2025.110309 | DOI Listing |
Probiotics Antimicrob Proteins
September 2025
Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
Anaerobic bacteria cause a wide range of infections, varying from mild to severe, whether localized, implant-associated, or invasive, often leading to high morbidity and mortality. These infections are challenging to manage due to antimicrobial resistance against common antibiotics such as carbapenems and nitroimidazoles. The empirical use of antibiotics has contributed to the emergence of resistant organisms, making the identification and development of new antibiotics increasingly difficult.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
School of Life Science, Liaoning Normal University, Dalian, 116081, China.
Cutibacterium acnes (C. acnes, formerly classified as Propionibacterium acnes) is a Gram-positive bacterium that contributes to the development of acne vulgaris, resulting in inflammation and pustule formation on the skin. In this study, we developed and synthesized a series of antimicrobial peptides (AMPs) that are derived from the skin secretion of Rana chensinensis.
View Article and Find Full Text PDFOdontology
September 2025
Department of Biology, SR.C., Islamic Azad University, Tehran, Iran.
Streptococcus mutans, a key cause of dental caries, is not treated by conventional toothpaste, brushing, flossing, or antiseptic mouthwashes. This necessitates the development of enriched toothpaste. Cyanobacteria-derived phycoerythrin (PE) has antioxidant and antibacterial properties.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
The catalytic asymmetric Mannich reaction is a multicomponent reaction which affords β-amino carbonyl compounds by utilizing an aldehyde, a primary or secondary amine/ammonia, and a ketone. β-amino carbonyl scaffolds are crucial intermediates for the synthesis of naturally occurring bioactive compounds and their derivatives. The synthesized natural compounds exhibit a broad spectrum of biological activities including anti-fungal, anti-cancer, anti-bacterial, anti-HIV, anti-oxidant, and anti-inflammatory activities.
View Article and Find Full Text PDFNaturwissenschaften
September 2025
Department of Biomedical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India.
Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.
View Article and Find Full Text PDF