Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Both naphthalene and azulene have the same number of carbon and hydrogen atoms, but the former is an alternant hydrocarbon and the latter is a nonalternant hydrocarbon. This leads to a large difference in their electronic and transport properties. Herein, quantum transport is investigated through these two molecules and it is shown how quantum interference (QI) affects their electrical conductance. It is demonstrated that the orbital rule to predict QI breaks down in both naphthalene and azulene. The influence of environmental fluctuations on their QI and electrical conductance is also investigated. The results show that QI in azulene is more sensitive to environmental fluctuations than in naphthalene. In particular, destructive QI can be changed to constructive QI in azulene by small environmental fluctuations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935908 | PMC |
http://dx.doi.org/10.1002/smsc.202300075 | DOI Listing |