98%
921
2 minutes
20
All-solid-state lithium batteries (ASSLBs) are a research hotspot for their superior safety. The solid electrolytes (SEs) are key components in ASSLBs, and the emerging rare-earth halide SEs (RE-HSEs) are valued for their comprehensive performances of good ionic conductivity, electrochemical stability, and deformability. In addition, cathode materials can influence the properties of ASSLBs, and sulfur (S) attracts much attention due to the lower toxicity and much higher energy density compared with commercial oxide cathodes. However, the S possesses poor electronic conductivity, which can be improved by the introduction of selenium (Se) with much higher electronic conductivity. In this work, a series of Se S composites is synthesized by a melting method. Due to the introduction of Se and the enriched defects from the melting process, the electronic and ionic conductivities of Se S are improved. After application in ASSLBs based on RE-HSE LiYBr, the Se S materials exhibit good performances with low polarizations, good cycling stabilities, and excellent rate properties at room temperature. Moreover, the assembled solid batteries can realize stable cycling performance (100 cycles) at low temperature (-30 °C) and a normal discharge-charge process at high temperature (120 °C).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11935919 | PMC |
http://dx.doi.org/10.1002/smsc.202300134 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2025
Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland. Electronic address:
The rapid evolution of microelectronics requires materials that combine exceptional strength, ductility, and electrical conductivity for joining applications and durable lithium-ion battery anodes. Nanotwinned Cu (nt-Cu) surpasses conventional strengthening approaches, which often compromise ductility and conductivity, by using nanoscale twin boundaries to enhance both mechanical and electrical properties. This review examines the thermomechanical characteristics, fabrication methods, multiscale mechanistic insights, and technological applications of nt-Cu, bridging fundamental science with engineering practice.
View Article and Find Full Text PDFSmall Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Lithium-sulfur batteries (LSBs) hold great potential as next-generation energy storage systems due to their high theoretical energy density and relatively low cost. However, their practical application is hindered by issues such as the shuttle phenomenon caused by soluble lithium polysulfides (LiPSs), slow redox reaction rates, and unsatisfactory cycling stability. In this study, novel conjugated metal-organic frameworks, MM″(HHTP) (M, M″ = Ni, Co, Cu) is reported, as a functional coating on polypropylene (PP) separators.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
High entropy electrolytes show great potential in the design of next generation batteries. Demonstrating how salt components of high entropy electrolytes influence the charge storage performance of batteries is essential in the tuning and design of such advanced electrolytes. This study investigates the transport and interfacial properties for lithium hexafluorophosphate (LiPF) in ethylene carbonate and dimethyl carbonate (EC/DMC) solvent with commonly used additives for high entropy electrolytes (LiTFSI, LiDFOB, and LiNO).
View Article and Find Full Text PDF