A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Vertical distribution of microplastics in soil affects plant response to microplastics. | LitMetric

Vertical distribution of microplastics in soil affects plant response to microplastics.

NanoImpact

Freie Universität Berlin, Institute of Biology, Plant Ecology, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstr. 6, 14195 Berlin, Germany.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The impacts of microplastics on plants have been extensively researched, yielding a variety of responses: promoting growth, limiting growth, or causing no change in plants. Experimental studies, following basic principles of ecotoxicology, typically use a homogeneous distribution of microplastics in soils, where soil and microplastic are well-mixed. However, in the environment, plastic is not homogeneously distributed. Therefore, we tested whether the distribution of microplastics in soils affects the impact observed on plants. For this purpose, we tested the effect of homogeneously distributed microplastics and heterogeneously distributed microplastics (at different levels) on the growth of spring onions. In addition, the presence of drought was also included in our greenhouse experiment. The results show that the distribution of microplastics (whether it is homogeneous or heterogeneous) affects the growth of spring onions differently, especially the shoot and root mass. First, differences of 21-22 % in shoot mass and 29-38 % in root mass were observed between heterogeneously distributed treatments and the homogeneous treatment. Second, under drought conditions, the effects -particularly on shoot mass and the C:N (carbon:nitrogen) ratio- may differ compared to non-drought. Differences of 30-37 % in shoot mass, and up to 16 % in the carbon/nitrogen ratio were observed between different heterogeneously distributed treatments and the homogeneous treatment in the drought case. In addition, shoot mass and the C:N ratio varied depending on drought conditions. Our results strongly suggest that future experiments on microplastic effects in soil should consider at least vertically heterogeneity of the pollutant to arrive at more realistic effect estimates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.impact.2025.100557DOI Listing

Publication Analysis

Top Keywords

distribution microplastics
16
shoot mass
16
heterogeneously distributed
12
microplastics
8
microplastics soils
8
homogeneously distributed
8
distributed microplastics
8
growth spring
8
spring onions
8
root mass
8

Similar Publications