Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The discrete memristive chaotic system is characterized by discontinuous phase trajectories. To address the limitations of the ideal integer-order discrete memristor model, which fails to accurately reflect the characteristics of practical devices, this study introduces a Grunwald-Letnikov type quadratic trivariate fractional discrete memristor model to enhance the nonlinearity and memory properties of memristors. Simultaneously, it is demonstrated that our model satisfies the essential characteristics of the generalized memristor. Based on this newly proposed fractional discrete memristor, a new four-dimensional fractional discrete memristive hyperchaotic system is constructed by coupling non-uniform, incommensurate-order memristors. This system advances the structure of existing discrete chaotic systems and provides a more flexible strategy for optimizing memory effects. The dynamical behaviors are analyzed using attractor phase diagrams, bifurcation diagrams, Lyapunov exponent spectra, and permutation entropy complexity. Numerical simulation results show that the system can exhibit a larger hyperchaotic region, higher complexity, and rich multistable behaviors, such as the coexistence of infinitely symmetric attractors and enhanced offset. Additionally, the impact of the incommensurate-order parameter on the system's chaotic behavior is revealed, with order serving as a tunable control variable that dynamically reconfigures bifurcation paths as needed, thereby enabling transitions between hyperchaotic, chaotic, and non-chaotic states. Furthermore, a simulation circuit was designed to validate the numerical simulation results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0257053 | DOI Listing |