Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here we used millimetre-scale volumetric electron microscopy to investigate the connectivity of all inhibitory neurons across a densely segmented neuronal population of 1,352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibition with more than 70,000 synapses. Inspired by classical neuroanatomy, we classified inhibitory neurons based on targeting of dendritic compartments and developed an excitatory neuron classification based on dendritic reconstructions with whole-cell maps of synaptic input. Single-cell connectivity showed a class of disinhibitory specialist that targets basket cells. Analysis of inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of spatially intermingled subpopulations. Inhibitory targeting was organized into 'motif groups', diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking contemporary multimodal neuronal atlases with the cortical wiring diagram.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11981935 | PMC |
http://dx.doi.org/10.1038/s41586-024-07780-8 | DOI Listing |