Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neuronal activities that synchronize with the breathing rhythm have been found in humans and a host of mammalian species, not only in brain areas closely related to respiratory control or olfactory coding but also in areas linked to emotional and higher cognitive functions. In parallel, evidence is mounting for modulations of perception and action by the breathing cycle. In this Review, we discuss the extent to which brain activity locks to breathing across areas, levels of organization and brain states, and the physiological origins of this global synchrony. We describe how waves of sensory activity evoked by nasal airflow spread through brain circuits, synchronizing neuronal populations to the breathing cycle and modulating faster oscillations, cell assembly formation and cross-area communication, thereby providing a mechanistic link from breathing to neural coding, emotion and cognition. We argue that, through evolution, the breathing rhythm has come to shape network functions across species.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41583-025-00920-7DOI Listing

Publication Analysis

Top Keywords

breathing cycle
12
brain activity
8
breathing rhythm
8
breathing
7
brain
5
global coordination
4
coordination brain
4
activity breathing
4
cycle neuronal
4
neuronal activities
4

Similar Publications

In recent years, there has been a rapid increase in the incidence of thyroid carcinoma (TC). Our study focuses on the regulatory effect of circular RNAs on metabolism of TC, aiming to provide new insights into the mechanisms of progression and a potential therapeutic target for TC. In this study, we identified high expression levels of circPSD3 in TC tissues through RNA sequencing.

View Article and Find Full Text PDF

Background: Stereotactic body radiotherapy (SBRT) is an effective treatment for early-stage non-small cell lung cancer. However, patient breathing can affect treatment accuracy. Therefore, this study aimed to develop a bi-polar (BP) gated motion management strategy for SBRT and evaluate its feasibility geometrically and dosimetrically.

View Article and Find Full Text PDF

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

Importance: The cost-effectiveness of adding early in-bed cycling to usual physiotherapy among adults receiving mechanical ventilation in the intensive care unit (ICU) compared with usual physiotherapy alone is unknown.

Objective: To evaluate the cost-effectiveness of in-bed cycling plus usual physiotherapy compared with usual therapy alone in the Critical Care Cycling to Improve Lower Extremity Strength (CYCLE) randomized clinical trial.

Design, Setting, And Participants: This trial-based economic evaluation with a 90-day time horizon compared early cycling plus usual physiotherapy vs usual physiotherapy alone from a societal perspective.

View Article and Find Full Text PDF

Accurate modeling of lung parenchymal biomechanics is critical for understanding respiratory function and improving diagnoses. Traditional hyperelastic models capture tissue deformation but miss essential physiological interactions. This study evaluates an experimentally informed poroelastic model (Birzle's formulation) against hyperelastic-only models within a finite element framework.

View Article and Find Full Text PDF