A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cell type-specific multi-omics analysis of cocaine use disorder in the human caudate nucleus. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Structural and functional alterations in the brain's reward circuitry are present in cocaine use disorder (CocUD), but their molecular underpinnings remain unclear. To investigate these mechanisms, we performed single-nuclei multiome profiling on postmortem caudate nucleus tissue from six individuals with CocUD and eight controls. We profiled 30,030 nuclei, identifying 13 cell types including D1- and D2-medium spiny neurons (MSNs) and glial cells. We observed 1485 differentially regulated genes and 10,342 differentially accessible peaks, with alterations in MSNs and astrocytes related to neurotransmitter activity and synapse organization. Gene regulatory network analysis identified transcription factors including ZEB1 as exhibiting distinct CocUD-specific subclusters, activating downstream expression of ion- and calcium-channels in MSNs. Further, PDE10A emerged as a potential drug target, showing conserved effects in a rat model. This study highlights cell type-specific molecular alterations in CocUD and provides targets for further investigation, demonstrating the value of multi-omics approaches in addiction research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982542PMC
http://dx.doi.org/10.1038/s41467-025-57339-yDOI Listing

Publication Analysis

Top Keywords

cell type-specific
8
cocaine disorder
8
caudate nucleus
8
type-specific multi-omics
4
multi-omics analysis
4
analysis cocaine
4
disorder human
4
human caudate
4
nucleus structural
4
structural functional
4

Similar Publications